Mercurial > repos > bgruening > sklearn_model_validation
comparison model_validation.xml @ 17:cf9aa11b91c8 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ab963ec9498bd05d2fb2f24f75adb2fccae7958c
author | bgruening |
---|---|
date | Wed, 15 May 2019 07:42:07 -0400 |
parents | 86e1e2874460 |
children | efbec977a47d |
comparison
equal
deleted
inserted
replaced
16:86e1e2874460 | 17:cf9aa11b91c8 |
---|---|
13 </command> | 13 </command> |
14 <configfiles> | 14 <configfiles> |
15 <inputs name="inputs" /> | 15 <inputs name="inputs" /> |
16 <configfile name="sklearn_model_validation_script"> | 16 <configfile name="sklearn_model_validation_script"> |
17 <![CDATA[ | 17 <![CDATA[ |
18 import imblearn | |
19 import json | |
20 import numpy as np | |
21 import pandas as pd | |
22 import pickle | |
23 import pprint | |
24 import skrebate | |
18 import sys | 25 import sys |
19 import os | 26 import warnings |
20 import json | 27 import xgboost |
21 import pandas | 28 from mlxtend import classifier, regressor |
22 import numpy as np | 29 from sklearn import ( |
23 from sklearn import preprocessing, model_selection, svm, linear_model, ensemble, naive_bayes, tree, neighbors | 30 cluster, compose, decomposition, ensemble, feature_extraction, |
24 from sklearn.pipeline import Pipeline | 31 feature_selection, gaussian_process, kernel_approximation, metrics, |
25 | 32 model_selection, naive_bayes, neighbors, pipeline, preprocessing, |
26 exec(open('$__tool_directory__/utils.py').read(), globals()) | 33 svm, linear_model, tree, discriminant_analysis) |
34 | |
35 sys.path.insert(0, '$__tool_directory__') | |
36 from utils import SafeEval, get_cv, get_scoring, load_model, read_columns | |
37 | |
38 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | |
27 | 39 |
28 warnings.filterwarnings('ignore') | 40 warnings.filterwarnings('ignore') |
29 | 41 |
30 safe_eval = SafeEval() | 42 safe_eval = SafeEval() |
31 | 43 |
32 input_json_path = sys.argv[1] | 44 input_json_path = sys.argv[1] |
33 with open(input_json_path, 'r') as param_handler: | 45 with open(input_json_path, 'r') as param_handler: |
34 params = json.load(param_handler) | 46 params = json.load(param_handler) |
47 | |
48 #if $model_validation_functions.options.cv_selector.selected_cv\ | |
49 in ['GroupKFold', 'GroupShuffleSplit', 'LeaveOneGroupOut', 'LeavePGroupsOut']: | |
50 params['model_validation_functions']['options']['cv_selector']['groups_selector']['infile_g'] =\ | |
51 '$model_validation_functions.options.cv_selector.groups_selector.infile_g' | |
52 #end if | |
35 | 53 |
36 input_type = params['input_options']['selected_input'] | 54 input_type = params['input_options']['selected_input'] |
37 if input_type == 'tabular': | 55 if input_type == 'tabular': |
38 header = 'infer' if params['input_options']['header1'] else None | 56 header = 'infer' if params['input_options']['header1'] else None |
39 column_option = params['input_options']['column_selector_options_1']['selected_column_selector_option'] | 57 column_option = params['input_options']['column_selector_options_1']['selected_column_selector_option'] |
45 '$input_options.infile1', | 63 '$input_options.infile1', |
46 c = c, | 64 c = c, |
47 c_option = column_option, | 65 c_option = column_option, |
48 sep='\t', | 66 sep='\t', |
49 header=header, | 67 header=header, |
50 parse_dates=True | 68 parse_dates=True).astype(float) |
51 ) | |
52 else: | 69 else: |
53 X = mmread('$input_options.infile1') | 70 X = mmread('$input_options.infile1') |
54 | 71 |
55 header = 'infer' if params['input_options']['header2'] else None | 72 header = 'infer' if params['input_options']['header2'] else None |
56 column_option = params['input_options']['column_selector_options_2']['selected_column_selector_option2'] | 73 column_option = params['input_options']['column_selector_options_2']['selected_column_selector_option2'] |
62 '$input_options.infile2', | 79 '$input_options.infile2', |
63 c = c, | 80 c = c, |
64 c_option = column_option, | 81 c_option = column_option, |
65 sep='\t', | 82 sep='\t', |
66 header=header, | 83 header=header, |
67 parse_dates=True | 84 parse_dates=True) |
68 ) | 85 y = y.ravel() |
69 y=y.ravel() | 86 |
70 | 87 ## handle options |
71 options = params['model_validation_functions']['options'] | 88 options = params['model_validation_functions']['options'] |
72 splitter, groups = get_cv( options.pop('cv_selector') ) | 89 splitter, groups = get_cv( options.pop('cv_selector') ) |
73 if groups is None: | 90 options['cv'] = splitter |
74 options['cv'] = splitter | 91 options['groups'] = groups |
75 elif groups == '': | |
76 options['cv'] = list( splitter.split(X, y, groups=None) ) | |
77 else: | |
78 options['cv'] = list( splitter.split(X, y, groups=groups) ) | |
79 options['n_jobs'] = N_JOBS | 92 options['n_jobs'] = N_JOBS |
80 if 'scoring' in options: | 93 if 'scoring' in options: |
94 primary_scoring = options['scoring']['primary_scoring'] | |
81 options['scoring'] = get_scoring(options['scoring']) | 95 options['scoring'] = get_scoring(options['scoring']) |
82 if 'pre_dispatch' in options and options['pre_dispatch'] == '': | 96 if 'pre_dispatch' in options and options['pre_dispatch'] == '': |
83 options['pre_dispatch'] = None | 97 options['pre_dispatch'] = None |
84 | 98 |
85 pipeline_steps = [] | 99 ## load pipeline |
86 | 100 with open('$infile_pipeline', 'rb') as pipeline_handler: |
87 ## Set up pre_processor and add to pipeline steps. | 101 pipeline = load_model(pipeline_handler) |
88 if params['pre_processing']['do_pre_processing'] == 'Yes': | |
89 preprocessor = params['pre_processing']['pre_processors']['selected_pre_processor'] | |
90 pre_processor_options = params['pre_processing']['pre_processors']['options'] | |
91 my_class = getattr(preprocessing, preprocessor) | |
92 pipeline_steps.append( ('pre_processor', my_class(**pre_processor_options)) ) | |
93 | |
94 ## Set up feature selector and add to pipeline steps. | |
95 if params['feature_selection']['do_feature_selection'] == 'Yes': | |
96 feature_selector = feature_selector(params['feature_selection']['fs_algorithm_selector']) | |
97 pipeline_steps.append( ('feature_selector', feature_selector) ) | |
98 | |
99 ## Set up estimator and add to pipeline. | |
100 estimator_json = params['model_validation_functions']['estimator_selector'] | |
101 estimator = get_estimator(estimator_json) | |
102 | |
103 pipeline_steps.append( ('estimator', estimator) ) | |
104 | |
105 pipeline = Pipeline(pipeline_steps) | |
106 | 102 |
107 ## Set up validator, run pipeline through validator and return results. | 103 ## Set up validator, run pipeline through validator and return results. |
108 | 104 |
109 validator = params['model_validation_functions']['selected_function'] | 105 validator = params['model_validation_functions']['selected_function'] |
110 validator = getattr(model_selection, validator) | 106 validator = getattr(model_selection, validator) |
111 | 107 |
112 selected_function = params['model_validation_functions']['selected_function'] | 108 selected_function = params['model_validation_functions']['selected_function'] |
113 rval_type = params['model_validation_functions'].get('return_type', None) | |
114 | 109 |
115 if selected_function == 'cross_validate': | 110 if selected_function == 'cross_validate': |
116 res = validator(pipeline, X, y, **options) | 111 res = validator(pipeline, X, y, **options) |
117 rval = res[rval_type] | 112 rval = pd.DataFrame(res) |
113 col_rename = {} | |
114 for col in rval.columns: | |
115 if col.endswith('_primary'): | |
116 col_rename[col] = col[:-7] + primary_scoring | |
117 rval.rename(inplace=True, columns=col_rename) | |
118 elif selected_function == 'cross_val_predict': | |
119 predicted = validator(pipeline, X, y, **options) | |
120 if len(predicted.shape) == 1: | |
121 rval = pd.DataFrame(predicted, columns=['Predicted']) | |
122 else: | |
123 rval = pd.DataFrame(predicted) | |
118 elif selected_function == 'learning_curve': | 124 elif selected_function == 'learning_curve': |
119 options['train_sizes'] = eval(options['train_sizes']) | 125 try: |
126 train_sizes = safe_eval(options['train_sizes']) | |
127 except: | |
128 sys.exit("Unsupported train_sizes input! Supports int/float in tuple and array-like structure.") | |
129 if type(train_sizes) is tuple: | |
130 train_sizes = np.linspace(*train_sizes) | |
131 options['train_sizes'] = train_sizes | |
120 train_sizes_abs, train_scores, test_scores = validator(pipeline, X, y, **options) | 132 train_sizes_abs, train_scores, test_scores = validator(pipeline, X, y, **options) |
121 rval = eval(rval_type) | 133 rval = pd.DataFrame(dict( |
134 train_sizes_abs = train_sizes_abs, | |
135 mean_train_scores = np.mean(train_scores, axis=1), | |
136 std_train_scores = np.std(train_scores, axis=1), | |
137 mean_test_scores = np.mean(test_scores, axis=1), | |
138 std_test_scores = np.std(test_scores, axis=1))) | |
139 rval = rval[['train_sizes_abs', 'mean_train_scores', 'std_train_scores', | |
140 'mean_test_scores', 'std_test_scores']] | |
122 elif selected_function == 'permutation_test_score': | 141 elif selected_function == 'permutation_test_score': |
123 score, permutation_scores, pvalue = validator(pipeline, X, y, **options) | 142 score, permutation_scores, pvalue = validator(pipeline, X, y, **options) |
124 rval = eval(rval_type) | 143 permutation_scores_df = pd.DataFrame(dict( |
125 if rval_type in ['score', 'pvalue']: | 144 permutation_scores = permutation_scores)) |
126 rval = [rval] | 145 score_df = pd.DataFrame(dict( |
127 elif selected_function == 'validation_curve': | 146 score = [score], |
128 options['param_name'] = 'estimator__' + options['param_name'] | 147 pvalue = [pvalue])) |
129 options['param_range'] = eval(options['param_range']) | 148 rval = pd.concat([score_df[['score', 'pvalue']], permutation_scores_df], axis=1) |
130 train_scores, test_scores = validator(pipeline, X, y, **options) | 149 |
131 rval = eval(rval_type) | 150 rval.to_csv(path_or_buf='$outfile', sep='\t', header=True, index=False) |
132 else: | |
133 rval = validator(pipeline, X, y, **options) | |
134 | |
135 rval = pandas.DataFrame(rval) | |
136 rval.to_csv(path_or_buf='$outfile', sep='\t', header=False, index=False) | |
137 | 151 |
138 ]]> | 152 ]]> |
139 </configfile> | 153 </configfile> |
140 </configfiles> | 154 </configfiles> |
141 <inputs> | 155 <inputs> |
142 <conditional name="pre_processing"> | 156 <param name="infile_pipeline" type="data" format="zip" label="Choose the dataset containing model/pipeline object"/> |
143 <param name="do_pre_processing" type="select" label="Do pre_processing?"> | |
144 <option value="No" selected="true"/> | |
145 <option value="Yes"/> | |
146 </param> | |
147 <when value="No"/> | |
148 <when value="Yes"> | |
149 <conditional name="pre_processors"> | |
150 <expand macro="sparse_preprocessors_ext" /> | |
151 <expand macro="sparse_preprocessor_options_ext" /> | |
152 </conditional> | |
153 </when> | |
154 </conditional> | |
155 <conditional name="feature_selection"> | |
156 <param name="do_feature_selection" type="select" label="Do feature selection?"> | |
157 <option value="No" selected="true"/> | |
158 <option value="Yes"/> | |
159 </param> | |
160 <when value="No"/> | |
161 <when value="Yes"> | |
162 <expand macro="feature_selection_pipeline"/> | |
163 </when> | |
164 </conditional> | |
165 <conditional name="model_validation_functions"> | 157 <conditional name="model_validation_functions"> |
166 <param name="selected_function" type="select" label="Select a model validation function"> | 158 <param name="selected_function" type="select" label="Select a model validation function"> |
167 <option value="cross_validate">cross_validate - Evaluate metric(s) by cross-validation and also record fit/score times</option> | 159 <option value="cross_validate">cross_validate - Evaluate metric(s) by cross-validation and also record fit/score times</option> |
168 <option value="cross_val_predict">cross_val_predict - Generate cross-validated estimates for each input data point</option> | 160 <option value="cross_val_predict">cross_val_predict - Generate cross-validated estimates for each input data point</option> |
169 <option value="cross_val_score">cross_val_score - Evaluate a score by cross-validation</option> | |
170 <option value="learning_curve">learning_curve - Learning curve</option> | 161 <option value="learning_curve">learning_curve - Learning curve</option> |
171 <option value="permutation_test_score">permutation_test_score - Evaluate the significance of a cross-validated score with permutations</option> | 162 <option value="permutation_test_score">permutation_test_score - Evaluate the significance of a cross-validated score with permutations</option> |
172 <option value="validation_curve">validation_curve - Validation curve</option> | 163 <option value="validation_curve">validation_curve - Use grid search with one parameter instead</option> |
173 </param> | 164 </param> |
174 <when value="cross_validate"> | 165 <when value="cross_validate"> |
175 <expand macro="estimator_selector_all" /> | |
176 <section name="options" title="Other Options" expanded="false"> | 166 <section name="options" title="Other Options" expanded="false"> |
177 <!--groups--> | 167 <expand macro="scoring_selection"/> |
178 <expand macro="model_validation_common_options"/> | 168 <expand macro="model_validation_common_options"/> |
179 <expand macro="scoring_selection"/> | 169 <!--param argument="return_train_score" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true" help="Whether to include train scores."/> --> |
170 <!--param argument="return_estimator" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false" help="Whether to return the estimators fitted on each split."/> --> | |
171 <!--param argument="error_score" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Raise fit error:" help="If false, the metric score is assigned to NaN if an error occurs in estimator fitting and FitFailedWarning is raised."/> --> | |
180 <!--fit_params--> | 172 <!--fit_params--> |
181 <expand macro="pre_dispatch"/> | 173 <expand macro="pre_dispatch"/> |
182 </section> | 174 </section> |
183 <param name="return_type" type="select" label="Select a return type"> | |
184 <option value="test_score" selected="true">test_score</option> | |
185 <option value="train_score">train_score</option> | |
186 <option value="fit_time">fit_time</option> | |
187 <option value="score_time">score_time</option> | |
188 </param> | |
189 </when> | 175 </when> |
190 <when value="cross_val_predict"> | 176 <when value="cross_val_predict"> |
191 <expand macro="estimator_selector_all" /> | |
192 <section name="options" title="Other Options" expanded="false"> | 177 <section name="options" title="Other Options" expanded="false"> |
193 <!--groups--> | |
194 <expand macro="model_validation_common_options" /> | 178 <expand macro="model_validation_common_options" /> |
195 <!--fit_params--> | 179 <!--fit_params--> |
196 <expand macro="pre_dispatch" value="2*n_jobs’" help="Controls the number of jobs that get dispatched during parallel execution"/> | 180 <expand macro="pre_dispatch" value="2*n_jobs’" help="Controls the number of jobs that get dispatched during parallel execution"/> |
197 <param argument="method" type="select" label="Invokes the passed method name of the passed estimator"> | 181 <param argument="method" type="select" label="Invokes the passed method name of the passed estimator"> |
198 <option value="predict" selected="true">predict</option> | 182 <option value="predict" selected="true">predict</option> |
199 <option value="predict_proba">predict_proba</option> | 183 <option value="predict_proba">predict_proba</option> |
200 </param> | 184 </param> |
201 </section> | 185 </section> |
202 </when> | 186 </when> |
203 <when value="cross_val_score"> | 187 <when value="learning_curve"> |
204 <expand macro="estimator_selector_all" /> | |
205 <section name="options" title="Other Options" expanded="false"> | 188 <section name="options" title="Other Options" expanded="false"> |
206 <!--groups--> | 189 <expand macro="scoring_selection"/> |
207 <expand macro="model_validation_common_options"/> | 190 <expand macro="model_validation_common_options"/> |
208 <expand macro="scoring_selection"/> | 191 <param argument="train_sizes" type="text" value="(0.1, 1.0, 5)" label="train_sizes" |
209 <!--fit_params--> | 192 help="Relative or absolute numbers of training examples that will be used to generate the learning curve. Supports 1) tuple, to be evaled by np.linspace, e.g. (0.1, 1.0, 5); 2) array-like, e.g. [0.1 , 0.325, 0.55 , 0.775, 1.]"> |
193 <sanitizer> | |
194 <valid initial="default"> | |
195 <add value="["/> | |
196 <add value="]"/> | |
197 </valid> | |
198 </sanitizer> | |
199 </param> | |
200 <param argument="exploit_incremental_learning" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false" help="Whether to apply incremental learning to speed up fitting of the estimator if supported"/> | |
210 <expand macro="pre_dispatch"/> | 201 <expand macro="pre_dispatch"/> |
202 <expand macro="shuffle" checked="false" label="shuffle" help="Whether to shuffle training data before taking prefixes"/> | |
203 <expand macro="random_state" help_text="If int, the seed used by the random number generator. Used when `shuffle` is True"/> | |
211 </section> | 204 </section> |
212 </when> | 205 </when> |
213 <when value="learning_curve"> | 206 <when value="permutation_test_score"> |
214 <expand macro="estimator_selector_all" /> | |
215 <section name="options" title="Other Options" expanded="false"> | 207 <section name="options" title="Other Options" expanded="false"> |
216 <!--groups--> | 208 <expand macro="scoring_selection"/> |
217 <expand macro="model_validation_common_options"/> | 209 <expand macro="model_validation_common_options"/> |
218 <param argument="train_sizes" type="text" value="np.linspace(0.1, 1.0, 5)" label="train_sizes" help="Relative or absolute numbers of training examples that will be used to generate the learning curve"/> | |
219 <expand macro="scoring_selection"/> | |
220 <param argument="exploit_incremental_learning" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="exploit_incremental_learning" help="Whether to apply incremental learning to speed up fitting of the estimator if supported"/> | |
221 <expand macro="pre_dispatch"/> | |
222 <expand macro="shuffle" checked="false" label="shuffle" help="Whether to shuffle training data before taking prefixes"/> | |
223 <expand macro="random_state"/> | |
224 </section> | |
225 <param name="return_type" type="select" label="Select a return type"> | |
226 <option value="train_sizes_abs" selected="true">train_sizes_abs</option> | |
227 <option value="train_scores">train_scores</option> | |
228 <option value="test_scores">test_scores</option> | |
229 </param> | |
230 </when> | |
231 <when value="permutation_test_score"> | |
232 <expand macro="estimator_selector_all" /> | |
233 <section name="options" title="Other Options" expanded="false"> | |
234 <!--groups--> | |
235 <expand macro="model_validation_common_options"/> | |
236 <expand macro="scoring_selection"/> | |
237 <param name="n_permutations" type="integer" value="100" optional="true" label="n_permutations" help="Number of times to permute y"/> | 210 <param name="n_permutations" type="integer" value="100" optional="true" label="n_permutations" help="Number of times to permute y"/> |
238 <expand macro="random_state"/> | 211 <expand macro="random_state"/> |
239 </section> | 212 </section> |
240 <param name="return_type" type="select" label="Select a return type"> | |
241 <option value="score" selected="true">score</option> | |
242 <option value="permutation_scores">permutation_scores</option> | |
243 <option value="pvalue">pvalue</option> | |
244 </param> | |
245 </when> | 213 </when> |
246 <when value="validation_curve"> | 214 <when value="validation_curve"/> |
247 <expand macro="estimator_selector_all" /> | |
248 <section name="options" title="Other Options" expanded="false"> | |
249 <param name="param_name" type="text" value="gamma" label="param_name" help="Name of the parameter that will be varied"/> | |
250 <param name="param_range" type="text" value="np.logspace(-6, -1, 5)" label="param_range" help="The values of the parameter that will be evaluated."/> | |
251 <!--groups--> | |
252 <expand macro="model_validation_common_options"/> | |
253 <expand macro="scoring_selection"/> | |
254 <expand macro="pre_dispatch"/> | |
255 </section> | |
256 <param name="return_type" type="select" label="Select a return type"> | |
257 <option value="train_scores" selected="true">train_scores</option> | |
258 <option value="test_scores">test_scores</option> | |
259 </param> | |
260 </when> | |
261 </conditional> | 215 </conditional> |
262 <expand macro="sl_mixed_input"/> | 216 <expand macro="sl_mixed_input"/> |
263 </inputs> | 217 </inputs> |
264 <outputs> | 218 <outputs> |
265 <data format="tabular" name="outfile"/> | 219 <data format="tabular" name="outfile"/> |
266 </outputs> | 220 </outputs> |
267 <tests> | 221 <tests> |
268 <test> | 222 <test> |
223 <param name="infile_pipeline" value="pipeline02"/> | |
269 <param name="selected_function" value="cross_validate"/> | 224 <param name="selected_function" value="cross_validate"/> |
270 <param name="selected_module" value="linear_model"/> | |
271 <param name="selected_estimator" value="LassoCV"/> | |
272 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> | 225 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> |
273 <param name="col1" value="1,2,3,4,5"/> | 226 <param name="col1" value="1,2,3,4,5"/> |
274 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> | 227 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> |
275 <param name="col2" value="6"/> | 228 <param name="col2" value="6"/> |
276 <output name="outfile" file="mv_result01.tabular"/> | 229 <output name="outfile"> |
277 </test> | 230 <assert_contents> |
278 <test> | 231 <has_n_columns n="4"/> |
232 <has_text text="0.9999961390418067"/> | |
233 <has_text text="0.9944541531269271"/> | |
234 <has_text text="0.9999193322454393"/> | |
235 </assert_contents> | |
236 </output> | |
237 </test> | |
238 <test> | |
239 <param name="infile_pipeline" value="pipeline02"/> | |
279 <param name="selected_function" value="cross_val_predict"/> | 240 <param name="selected_function" value="cross_val_predict"/> |
280 <param name="selected_module" value="linear_model"/> | |
281 <param name="selected_estimator" value="LassoCV"/> | |
282 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> | 241 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> |
283 <param name="col1" value="1,2,3,4,5"/> | 242 <param name="col1" value="1,2,3,4,5"/> |
284 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> | 243 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> |
285 <param name="col2" value="6"/> | 244 <param name="col2" value="6"/> |
286 <output name="outfile" file="mv_result02.tabular"/> | 245 <output name="outfile" file="mv_result02.tabular" lines_diff="4"/> |
287 </test> | 246 </test> |
288 <test> | 247 <test> |
289 <param name="selected_function" value="cross_val_score"/> | 248 <param name="infile_pipeline" value="pipeline05"/> |
290 <param name="selected_module" value="linear_model"/> | |
291 <param name="selected_estimator" value="LassoCV"/> | |
292 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> | |
293 <param name="col1" value="1,2,3,4,5"/> | |
294 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> | |
295 <param name="col2" value="6"/> | |
296 <output name="outfile" file="mv_result03.tabular"/> | |
297 </test> | |
298 <test> | |
299 <param name="selected_function" value="learning_curve"/> | 249 <param name="selected_function" value="learning_curve"/> |
300 <param name="selected_module" value="linear_model"/> | |
301 <param name="selected_estimator" value="LassoCV"/> | |
302 <param name="infile1" value="regression_X.tabular" ftype="tabular"/> | 250 <param name="infile1" value="regression_X.tabular" ftype="tabular"/> |
303 <param name="header1" value="true" /> | 251 <param name="header1" value="true" /> |
304 <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> | 252 <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> |
305 <param name="infile2" value="regression_y.tabular" ftype="tabular"/> | 253 <param name="infile2" value="regression_y.tabular" ftype="tabular"/> |
306 <param name="header2" value="true" /> | 254 <param name="header2" value="true" /> |
307 <param name="col2" value="1"/> | 255 <param name="col2" value="1"/> |
308 <output name="outfile" file="mv_result04.tabular"/> | 256 <output name="outfile" file="mv_result03.tabular"/> |
309 </test> | 257 </test> |
310 <test> | 258 <test> |
259 <param name="infile_pipeline" value="pipeline05"/> | |
311 <param name="selected_function" value="permutation_test_score"/> | 260 <param name="selected_function" value="permutation_test_score"/> |
312 <param name="selected_module" value="linear_model"/> | |
313 <param name="selected_estimator" value="LassoCV"/> | |
314 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> | 261 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> |
315 <param name="col1" value="1,2,3,4,5"/> | 262 <param name="col1" value="1,2,3,4,5"/> |
316 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> | 263 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> |
317 <param name="col2" value="6"/> | 264 <param name="col2" value="6"/> |
265 <output name="outfile"> | |
266 <assert_contents> | |
267 <has_n_columns n="3"/> | |
268 <has_text text="0.25697059258228816"/> | |
269 </assert_contents> | |
270 </output> | |
271 </test> | |
272 <test> | |
273 <param name="infile_pipeline" value="pipeline05"/> | |
274 <param name="selected_function" value="cross_val_predict"/> | |
275 <section name="groups_selector"> | |
276 <param name="infile_groups" value="regression_y.tabular" ftype="tabular"/> | |
277 <param name="header_g" value="true"/> | |
278 <param name="selected_column_selector_option_g" value="by_index_number"/> | |
279 <param name="col_g" value="1"/> | |
280 </section> | |
281 <param name="selected_cv" value="GroupKFold"/> | |
282 <param name="infile1" value="regression_X.tabular" ftype="tabular"/> | |
283 <param name="header1" value="true"/> | |
284 <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> | |
285 <param name="infile2" value="regression_y.tabular" ftype="tabular"/> | |
286 <param name="header2" value="true"/> | |
287 <param name="col2" value="1"/> | |
318 <output name="outfile" file="mv_result05.tabular"/> | 288 <output name="outfile" file="mv_result05.tabular"/> |
319 </test> | |
320 <test> | |
321 <param name="selected_function" value="validation_curve"/> | |
322 <param name="selected_module" value="svm"/> | |
323 <param name="selected_estimator" value="SVC"/> | |
324 <param name="text_params" value="kernel='linear'"/> | |
325 <param name="infile1" value="regression_X.tabular" ftype="tabular"/> | |
326 <param name="header1" value="true" /> | |
327 <param name="selected_column_selector_option" value="all_columns"/> | |
328 <param name="infile2" value="regression_y.tabular" ftype="tabular"/> | |
329 <param name="header2" value="true" /> | |
330 <param name="col2" value="1"/> | |
331 <param name="return_type" value="test_scores"/> | |
332 <output name="outfile" file="mv_result06.tabular"/> | |
333 </test> | 289 </test> |
334 </tests> | 290 </tests> |
335 <help> | 291 <help> |
336 <![CDATA[ | 292 <![CDATA[ |
337 **What it does** | 293 **What it does** |