Mercurial > repos > bgruening > sklearn_model_validation
view model_validation.xml @ 28:9b017b0da56e draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 19:01:30 +0000 |
parents | a5aed87b2cc0 |
children | 4b359039f09f |
line wrap: on
line source
<tool id="sklearn_model_validation" name="Model Validation" version="@VERSION@" profile="20.05"> <description>includes cross_validate, cross_val_predict, learning_curve, and more</description> <macros> <import>main_macros.xml</import> </macros> <expand macro="python_requirements" /> <expand macro="macro_stdio" /> <version_command>echo "@VERSION@"</version_command> <command> <![CDATA[ export HDF5_USE_FILE_LOCKING='FALSE'; python "$sklearn_model_validation_script" '$inputs' ]]> </command> <configfiles> <inputs name="inputs" /> <configfile name="sklearn_model_validation_script"> <![CDATA[ import imblearn import joblib import json import numpy as np import os import pandas as pd import pickle import pprint import skrebate import sys import warnings import xgboost from mlxtend import classifier, regressor from sklearn import ( cluster, compose, decomposition, ensemble, feature_extraction, feature_selection, gaussian_process, kernel_approximation, metrics, model_selection, naive_bayes, neighbors, pipeline, preprocessing, svm, linear_model, tree, discriminant_analysis) from sklearn.model_selection import _validation from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model, read_columns, get_module) from galaxy_ml.model_validations import _fit_and_score setattr(_validation, '_fit_and_score', _fit_and_score) N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) CACHE_DIR = os.path.join(os.getcwd(), 'cached') del os ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', 'CSVLogger', 'None') warnings.filterwarnings('ignore') safe_eval = SafeEval() input_json_path = sys.argv[1] with open(input_json_path, 'r') as param_handler: params = json.load(param_handler) ## load estimator with open('$infile_estimator', 'rb') as estimator_handler: estimator = load_model(estimator_handler) estimator_params = estimator.get_params() ## check estimator hyperparameters memory = joblib.Memory(location=CACHE_DIR, verbose=0) # cache iraps_core fits could increase search speed significantly if estimator.__class__.__name__ == 'IRAPSClassifier': estimator.set_params(memory=memory) else: # For iraps buried in pipeline for p, v in estimator_params.items(): if p.endswith('memory'): # for case of `__irapsclassifier__memory` if len(p) > 8 and p[:-8].endswith('irapsclassifier'): # cache iraps_core fits could increase search # speed significantly new_params = {p: memory} estimator.set_params(**new_params) # security reason, we don't want memory being # modified unexpectedly elif v: new_params = {p, None} estimator.set_params(**new_params) # For now, 1 CPU is suggested for iprasclassifier elif p.endswith('n_jobs'): new_params = {p: 1} estimator.set_params(**new_params) # for security reason, types of callback are limited elif p.endswith('callbacks'): for cb in v: cb_type = cb['callback_selection']['callback_type'] if cb_type not in ALLOWED_CALLBACKS: raise ValueError( "Prohibited callback type: %s!" % cb_type) ## store read dataframe object loaded_df = {} #if $input_options.selected_input == 'tabular' header = 'infer' if params['input_options']['header1'] else None column_option = params['input_options']['column_selector_options_1']['selected_column_selector_option'] if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_1']['col1'] else: c = None infile1 = '$input_options.infile1' df_key = infile1 + repr(header) df = pd.read_csv(infile1, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = df X = read_columns(df, c=c, c_option=column_option).astype(float) #elif $input_options.selected_input == 'sparse': X = mmread('$input_options.infile1') #elif $input_options.selected_input == 'seq_fasta' fasta_path = '$input_options.fasta_path' pyfaidx = get_module('pyfaidx') sequences = pyfaidx.Fasta(fasta_path) n_seqs = len(sequences.keys()) X = np.arange(n_seqs)[:, np.newaxis] for param in estimator_params.keys(): if param.endswith('fasta_path'): estimator.set_params( **{param: fasta_path}) break else: raise ValueError( "The selected estimator doesn't support " "fasta file input! Please consider using " "KerasGBatchClassifier with " "FastaDNABatchGenerator/FastaProteinBatchGenerator " "or having GenomeOneHotEncoder/ProteinOneHotEncoder " "in pipeline!") #elif $input_options.selected_input == 'refseq_and_interval' ref_seq = '$input_options.ref_genome_file' intervals = '$input_options.interval_file' targets = __import__('os').path.join(__import__('os').getcwd(), '${target_file.element_identifier}.gz') path_params = { 'data_batch_generator__ref_genome_path': ref_seq, 'data_batch_generator__intervals_path': intervals, 'data_batch_generator__target_path': targets } estimator.set_params(**path_params) n_intervals = sum(1 for line in open(intervals)) X = np.arange(n_intervals)[:, np.newaxis] #end if header = 'infer' if params['input_options']['header2'] else None column_option = params['input_options']['column_selector_options_2']['selected_column_selector_option2'] if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_2']['col2'] else: c = None infile2 = '$input_options.infile2' df_key = infile2 + repr(header) if df_key in loaded_df: infile2 = loaded_df[df_key] else: infile2 = pd.read_csv(infile2, sep='\t', header=header, parse_dates=True) loaded_df[df_key] = infile2 y = read_columns( infile2, c = c, c_option = column_option, sep='\t', header=header, parse_dates=True) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() #if $input_options.selected_input == 'refseq_and_interval' estimator.set_params( data_batch_generator__features=y.ravel().tolist()) y = None #end if ## handle options options = params['model_validation_functions']['options'] #if $model_validation_functions.options.cv_selector.selected_cv\ in ['GroupKFold', 'GroupShuffleSplit', 'LeaveOneGroupOut', 'LeavePGroupsOut']: infile_g = '$model_validation_functions.options.cv_selector.groups_selector.infile_g' header = 'infer' if options['cv_selector']['groups_selector']['header_g'] else None column_option = (options['cv_selector']['groups_selector']['column_selector_options_g'] ['selected_column_selector_option_g']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = (options['cv_selector']['groups_selector']['column_selector_options_g']['col_g']) else: c = None df_key = infile_g + repr(header) if df_key in loaded_df: infile_g = loaded_df[df_key] groups = read_columns(infile_g, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) groups = groups.ravel() options['cv_selector']['groups_selector'] = groups #end if ## del loaded_df del loaded_df splitter, groups = get_cv( options.pop('cv_selector') ) options['cv'] = splitter options['groups'] = groups options['n_jobs'] = N_JOBS if 'scoring' in options: primary_scoring = options['scoring']['primary_scoring'] options['scoring'] = get_scoring(options['scoring']) if 'pre_dispatch' in options and options['pre_dispatch'] == '': options['pre_dispatch'] = None ## Set up validator, run estimator through validator and return results. validator = params['model_validation_functions']['selected_function'] validator = getattr(_validation, validator) selected_function = params['model_validation_functions']['selected_function'] if selected_function == 'cross_validate': res = validator(estimator, X, y, **options) stat = {} for k, v in res.items(): if k.startswith('test'): stat['mean_' + k] = np.mean(v) stat['std_' + k] = np.std(v) res.update(stat) rval = pd.DataFrame(res) rval = rval[sorted(rval.columns)] elif selected_function == 'cross_val_predict': predicted = validator(estimator, X, y, **options) if len(predicted.shape) == 1: rval = pd.DataFrame(predicted, columns=['Predicted']) else: rval = pd.DataFrame(predicted) elif selected_function == 'learning_curve': try: train_sizes = safe_eval(options['train_sizes']) except: sys.exit("Unsupported train_sizes input! Supports int/float in tuple and array-like structure.") if type(train_sizes) is tuple: train_sizes = np.linspace(*train_sizes) options['train_sizes'] = train_sizes train_sizes_abs, train_scores, test_scores = validator(estimator, X, y, **options) rval = pd.DataFrame(dict( train_sizes_abs = train_sizes_abs, mean_train_scores = np.mean(train_scores, axis=1), std_train_scores = np.std(train_scores, axis=1), mean_test_scores = np.mean(test_scores, axis=1), std_test_scores = np.std(test_scores, axis=1))) rval = rval[['train_sizes_abs', 'mean_train_scores', 'std_train_scores', 'mean_test_scores', 'std_test_scores']] elif selected_function == 'permutation_test_score': score, permutation_scores, pvalue = validator(estimator, X, y, **options) permutation_scores_df = pd.DataFrame(dict( permutation_scores = permutation_scores)) score_df = pd.DataFrame(dict( score = [score], pvalue = [pvalue])) rval = pd.concat([score_df[['score', 'pvalue']], permutation_scores_df], axis=1) rval.to_csv(path_or_buf='$outfile', sep='\t', header=True, index=False) ]]> </configfile> </configfiles> <inputs> <param name="infile_estimator" type="data" format="zip" label="Choose the dataset containing model/pipeline object" /> <conditional name="model_validation_functions"> <param name="selected_function" type="select" label="Select a model validation function"> <option value="cross_validate">cross_validate - Evaluate metric(s) by cross-validation and also record fit/score times</option> <option value="cross_val_predict">cross_val_predict - Generate cross-validated estimates for each input data point</option> <option value="learning_curve">learning_curve - Learning curve</option> <option value="permutation_test_score">permutation_test_score - Evaluate the significance of a cross-validated score with permutations</option> <option value="validation_curve">validation_curve - Use grid search with one parameter instead</option> </param> <when value="cross_validate"> <section name="options" title="Other Options" expanded="false"> <expand macro="scoring_selection" /> <expand macro="model_validation_common_options" /> <param argument="return_train_score" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false" help="Whether to include train scores." /> <!--param argument="return_estimator" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false" help="Whether to return the estimators fitted on each split."/> --> <!--param argument="error_score" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Raise fit error:" help="If false, the metric score is assigned to NaN if an error occurs in estimator fitting and FitFailedWarning is raised."/> --> <!--fit_params--> <expand macro="pre_dispatch" /> </section> </when> <when value="cross_val_predict"> <section name="options" title="Other Options" expanded="false"> <expand macro="model_validation_common_options" /> <!--fit_params--> <expand macro="pre_dispatch" value="2*n_jobs’" help="Controls the number of jobs that get dispatched during parallel execution" /> <param argument="method" type="select" label="Invokes the passed method name of the passed estimator"> <option value="predict" selected="true">predict</option> <option value="predict_proba">predict_proba</option> </param> </section> </when> <when value="learning_curve"> <section name="options" title="Other Options" expanded="false"> <expand macro="scoring_selection" /> <expand macro="model_validation_common_options" /> <param argument="train_sizes" type="text" value="(0.1, 1.0, 5)" label="train_sizes" help="Relative or absolute numbers of training examples that will be used to generate the learning curve. Supports 1) tuple, to be evaled by np.linspace, e.g. (0.1, 1.0, 5); 2) array-like, e.g. [0.1 , 0.325, 0.55 , 0.775, 1.]"> <sanitizer> <valid initial="default"> <add value="[" /> <add value="]" /> </valid> </sanitizer> </param> <param argument="exploit_incremental_learning" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false" help="Whether to apply incremental learning to speed up fitting of the estimator if supported" /> <expand macro="pre_dispatch" /> <expand macro="shuffle" checked="false" label="shuffle" help="Whether to shuffle training data before taking prefixes" /> <expand macro="random_state" help_text="If int, the seed used by the random number generator. Used when `shuffle` is True" /> </section> </when> <when value="permutation_test_score"> <section name="options" title="Other Options" expanded="false"> <expand macro="scoring_selection" /> <expand macro="model_validation_common_options" /> <param name="n_permutations" type="integer" value="100" optional="true" label="n_permutations" help="Number of times to permute y" /> <expand macro="random_state" /> </section> </when> <when value="validation_curve" /> </conditional> <expand macro="sl_mixed_input_plus_sequence" /> </inputs> <outputs> <data format="tabular" name="outfile" /> </outputs> <tests> <test> <param name="infile_estimator" value="pipeline02" /> <param name="selected_function" value="cross_validate" /> <param name="return_train_score" value="True" /> <param name="infile1" value="regression_train.tabular" ftype="tabular" /> <param name="col1" value="1,2,3,4,5" /> <param name="infile2" value="regression_train.tabular" ftype="tabular" /> <param name="col2" value="6" /> <output name="outfile"> <assert_contents> <has_n_columns n="6" /> <has_text text="0.9999961390418067" /> <has_text text="0.9944541531269271" /> <has_text text="0.9999193322454393" /> </assert_contents> </output> </test> <test> <param name="infile_estimator" value="pipeline02" /> <param name="selected_function" value="cross_val_predict" /> <param name="infile1" value="regression_train.tabular" ftype="tabular" /> <param name="col1" value="1,2,3,4,5" /> <param name="infile2" value="regression_train.tabular" ftype="tabular" /> <param name="col2" value="6" /> <output name="outfile" file="mv_result02.tabular" lines_diff="14" /> </test> <test> <param name="infile_estimator" value="pipeline05" /> <param name="selected_function" value="learning_curve" /> <param name="infile1" value="regression_X.tabular" ftype="tabular" /> <param name="header1" value="true" /> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17" /> <param name="infile2" value="regression_y.tabular" ftype="tabular" /> <param name="header2" value="true" /> <param name="col2" value="1" /> <output name="outfile" file="mv_result03.tabular" /> </test> <test> <param name="infile_estimator" value="pipeline05" /> <param name="selected_function" value="permutation_test_score" /> <param name="infile1" value="regression_train.tabular" ftype="tabular" /> <param name="col1" value="1,2,3,4,5" /> <param name="infile2" value="regression_train.tabular" ftype="tabular" /> <param name="col2" value="6" /> <output name="outfile"> <assert_contents> <has_n_columns n="3" /> <has_text text="0.25697059258228816" /> </assert_contents> </output> </test> <test> <param name="infile_estimator" value="pipeline05" /> <param name="selected_function" value="cross_val_predict" /> <section name="groups_selector"> <param name="infile_groups" value="regression_y.tabular" ftype="tabular" /> <param name="header_g" value="true" /> <param name="selected_column_selector_option_g" value="by_index_number" /> <param name="col_g" value="1" /> </section> <param name="selected_cv" value="GroupKFold" /> <param name="infile1" value="regression_X.tabular" ftype="tabular" /> <param name="header1" value="true" /> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17" /> <param name="infile2" value="regression_y.tabular" ftype="tabular" /> <param name="header2" value="true" /> <param name="col2" value="1" /> <output name="outfile" file="mv_result05.tabular" /> </test> </tests> <help> <![CDATA[ **What it does** This tool includes model validation functions to evaluate estimator performance in the cross-validation approach. This tool is based on sklearn.model_selection package. For information about model validation functions and their parameter settings please refer to `Scikit-learn model_selection`_. .. _`Scikit-learn model_selection`: http://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection ]]> </help> <expand macro="sklearn_citation"> <expand macro="skrebate_citation" /> <expand macro="xgboost_citation" /> </expand> </tool>