Mercurial > repos > bgruening > sklearn_model_validation
view model_validation.xml @ 2:dd502cb0d567 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 4ed8c4f6ef9ece81797a398b17a99bbaf49a6978
author | bgruening |
---|---|
date | Wed, 30 May 2018 08:27:01 -0400 |
parents | 333507faecab |
children | 424d8d21744d |
line wrap: on
line source
<tool id="sklearn_model_validation" name="Model Validation" version="@VERSION@"> <description>evaluates estimator performance by cross-validation</description> <macros> <import>main_macros.xml</import> </macros> <expand macro="python_requirements"/> <expand macro="macro_stdio"/> <version_command>echo "@VERSION@"</version_command> <command> <![CDATA[ python "$sklearn_model_validation_script" '$inputs' ]]> </command> <configfiles> <inputs name="inputs" /> <configfile name="sklearn_model_validation_script"> <![CDATA[ import sys import json import pandas import ast import pickle import numpy as np import sklearn.model_selection from sklearn import svm, linear_model, ensemble from sklearn.pipeline import Pipeline @COLUMNS_FUNCTION@ @FEATURE_SELECTOR_FUNCTION@ input_json_path = sys.argv[1] params = json.load(open(input_json_path, "r")) input_type = params["input_options"]["selected_input"] if input_type=="tabular": header = 'infer' if params["input_options"]["header1"] else None X = read_columns( "$input_options.infile1", "$input_options.col1", sep='\t', header=header, parse_dates=True ) else: X = mmread(open("$input_options.infile1", 'r')) header = 'infer' if params["input_options"]["header2"] else None y = read_columns( "$input_options.infile2", "$input_options.col2", sep='\t', header=header, parse_dates=True ) y=y.ravel() options = params["model_validation_functions"]["options"] if 'scoring' in options and options['scoring'] == '': options['scoring'] = None if 'pre_dispatch' in options and options['pre_dispatch'] == '': options['pre_dispatch'] = None pipeline_steps = [] ## Set up feature selector and add to pipeline steps. if params['feature_selection']['do_feature_selection'] == 'Yes': feature_selector = feature_selector(params['feature_selection']['feature_selection_algorithms']) pipeline_steps.append( ('feature_selector', feature_selector)) ## Set up estimator and add to pipeline. estimator=params["model_validation_functions"]["estimator"] if params["model_validation_functions"]["extra_estimator"]["has_estimator"] == 'no': estimator = params["model_validation_functions"]["extra_estimator"]["new_estimator"] estimator = eval(estimator.replace('__dq__', '"').replace("__sq__","'")) pipeline_steps.append( ('estimator', estimator) ) pipeline = Pipeline(pipeline_steps) ## Set up validator, run pipeline through validator and return results. validator = params["model_validation_functions"]["selected_function"] validator = getattr(sklearn.model_selection, validator) selected_function = params["model_validation_functions"]["selected_function"] rval_type = params["model_validation_functions"].get("return_type", None) if selected_function == 'cross_validate': res = validator(pipeline, X, y, **options) rval = res[rval_type] elif selected_function == 'learning_curve': options['train_sizes'] = eval(options['train_sizes']) train_sizes_abs, train_scores, test_scores = validator(pipeline, X, y, **options) rval = eval(rval_type) elif selected_function == 'permutation_test_score': score, permutation_scores, pvalue = validator(pipeline, X, y, **options) rval = eval(rval_type) if rval_type in ["score", "pvalue"]: rval = [rval] elif selected_function == 'validation_curve': options['param_name'] = 'estimator__' + options['param_name'] options['param_range'] = eval(options['param_range']) train_scores, test_scores = validator(pipeline, X, y, **options) rval = eval(rval_type) elif selected_function == 'GridSearchCV': param_grid = params["model_validation_functions"]["param_grid"].replace("__sq__","'")\ .replace('__dq__','"').replace("__oc__", "{").replace("__cc__", "}")\ .replace("__ob__", "[").replace("__cb__", "]") param_grid = ast.literal_eval(param_grid) grid = validator(pipeline, param_grid, **options) grid.fit(X, y) rval = getattr(grid, rval_type) if rval_type in ["best_estimator_", "best_score_", "best_index_"]: rval = [rval] else: rval = validator(pipeline, X, y, **options) rval = pandas.DataFrame(rval) if rval_type and rval_type == "cv_results_": rval.to_csv(path_or_buf="$outfile", sep='\t', header=True, index=False) else: rval.to_csv(path_or_buf="$outfile", sep='\t', header=False, index=False) ]]> </configfile> </configfiles> <inputs> <conditional name="feature_selection"> <param name="do_feature_selection" type="select" label="Do feature selection?"> <option value="No" selected="true"/> <option value="Yes"/> </param> <when value="No"/> <when value="Yes"> <expand macro="feature_selection_all"/> </when> </conditional> <conditional name="model_validation_functions"> <param name="selected_function" type="select" label="Select a model validation function"> <option value="GridSearchCV">GridSearchCV - Exhaustive search over specified parameter values for an estimator </option> <option value="cross_validate">cross_validate - Evaluate metric(s) by cross-validation and also record fit/score times</option> <option value="cross_val_predict">cross_val_predict - Generate cross-validated estimates for each input data point</option> <option value="cross_val_score">cross_val_score - Evaluate a score by cross-validation</option> <option value="learning_curve">learning_curve - Learning curve</option> <option value="permutation_test_score">permutation_test_score - Evaluate the significance of a cross-validated score with permutations</option> <option value="validation_curve">validation_curve - Validation curve</option> </param> <when value="GridSearchCV"> <expand macro="estimator_input_no_fit" /> <param argument="param_grid" type="text" value="[{'feature_selector__k': [3, 5, 7, 9], 'estimator__C': [1, 10, 100, 1000]}]" label="param_grid" help="Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored"/> <section name="options" title="Other Options" expanded="false"> <expand macro="scoring"/> <expand macro="model_validation_common_options"/> <expand macro="pre_dispatch" value="2*n_jobs" help="Controls the number of jobs that get dispatched during parallel execution"/> <param argument="iid" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="iid" help="Data is identically distributed?"/> <param argument="refit" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="refit" help="Refit an estimator using the best found parameters on the whole dataset."/> <!--error_score--> <param argument="return_train_score" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="return_train_score" help=""/> </section> <param name="return_type" type="select" label="Select a return type"> <option value="cv_results_" selected="true">cv_results_</option> <option value="best_estimator_">best_estimator_</option> <option value="best_score_">best_score_</option> <option value="best_params_">best_params_</option> <option value="best_index_">best_index_</option> </param> </when> <when value="cross_validate"> <expand macro="estimator_input_no_fit" /> <section name="options" title="Other Options" expanded="false"> <!--groups--> <expand macro="model_validation_common_options"/> <expand macro="scoring"/> <!--fit_params--> <expand macro="pre_dispatch"/> </section> <param name="return_type" type="select" label="Select a return type"> <option value="test_score" selected="true">test_score</option> <option value="train_score">train_score</option> <option value="fit_time">fit_time</option> <option value="score_time">score_time</option> </param> </when> <when value="cross_val_predict"> <expand macro="estimator_input_no_fit" /> <section name="options" title="Other Options" expanded="false"> <!--groups--> <expand macro="model_validation_common_options" /> <!--fit_params--> <expand macro="pre_dispatch" value="2*n_jobs’" help="Controls the number of jobs that get dispatched during parallel execution"/> <param argument="method" type="select" label="Invokes the passed method name of the passed estimator"> <option value="predict" selected="true">predict</option> <option value="predict_proba">predict_proba</option> </param> </section> </when> <when value="cross_val_score"> <expand macro="estimator_input_no_fit" /> <section name="options" title="Other Options" expanded="false"> <!--groups--> <expand macro="model_validation_common_options"/> <expand macro="scoring"/> <!--fit_params--> <expand macro="pre_dispatch"/> </section> </when> <when value="learning_curve"> <expand macro="estimator_input_no_fit" /> <section name="options" title="Other Options" expanded="false"> <!--groups--> <expand macro="model_validation_common_options"/> <param argument="train_sizes" type="text" value="np.linspace(0.1, 1.0, 5)" label="train_sizes" help="Relative or absolute numbers of training examples that will be used to generate the learning curve"/> <expand macro="scoring"/> <param argument="exploit_incremental_learning" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="exploit_incremental_learning" help="Whether to apply incremental learning to speed up fitting of the estimator if supported"/> <expand macro="pre_dispatch"/> <expand macro="shuffle" checked="false" label="shuffle" help="Whether to shuffle training data before taking prefixes"/> <expand macro="random_state"/> </section> <param name="return_type" type="select" label="Select a return type"> <option value="train_sizes_abs" selected="true">train_sizes_abs</option> <option value="train_scores">train_scores</option> <option value="test_scores">test_scores</option> </param> </when> <when value="permutation_test_score"> <expand macro="estimator_input_no_fit" /> <section name="options" title="Other Options" expanded="false"> <!--groups--> <expand macro="model_validation_common_options"/> <expand macro="scoring"/> <param name="n_permutations" type="integer" value="100" optional="true" label="n_permutations" help="Number of times to permute y"/> <expand macro="random_state"/> </section> <param name="return_type" type="select" label="Select a return type"> <option value="score" selected="true">score</option> <option value="permutation_scores">permutation_scores</option> <option value="pvalue">pvalue</option> </param> </when> <when value="validation_curve"> <expand macro="estimator_input_no_fit" /> <section name="options" title="Other Options" expanded="false"> <param name="param_name" type="text" value="gamma" label="param_name" help="Name of the parameter that will be varied"/> <param name="param_range" type="text" value="np.logspace(-6, -1, 5)" label="param_range" help="The values of the parameter that will be evaluated."/> <!--groups--> <expand macro="model_validation_common_options"/> <expand macro="scoring"/> <expand macro="pre_dispatch"/> </section> <param name="return_type" type="select" label="Select a return type"> <option value="train_scores" selected="true">train_scores</option> <option value="test_scores">test_scores</option> </param> </when> </conditional> <expand macro="sl_mixed_input"/> </inputs> <outputs> <data format="tabular" name="outfile"/> </outputs> <tests> <test> <param name="selected_function" value="cross_validate"/> <param name="estimator" value="linear_model.LassoCV()"/> <param name="has_estimator" value="yes"/> <param name="infile1" value="regression_train.tabular" ftype="tabular"/> <param name="col1" value="1,2,3,4,5"/> <param name="infile2" value="regression_train.tabular" ftype="tabular"/> <param name="col2" value="6"/> <output name="outfile" file="mv_result01.tabular"/> </test> <test> <param name="selected_function" value="cross_val_predict"/> <param name="estimator" value="linear_model.LassoCV()"/> <param name="has_estimator" value="yes"/> <param name="infile1" value="regression_train.tabular" ftype="tabular"/> <param name="col1" value="1,2,3,4,5"/> <param name="infile2" value="regression_train.tabular" ftype="tabular"/> <param name="col2" value="6"/> <output name="outfile" file="mv_result02.tabular"/> </test> <test> <param name="selected_function" value="cross_val_score"/> <param name="estimator" value="linear_model.LassoCV()"/> <param name="has_estimator" value="yes"/> <param name="infile1" value="regression_train.tabular" ftype="tabular"/> <param name="col1" value="1,2,3,4,5"/> <param name="infile2" value="regression_train.tabular" ftype="tabular"/> <param name="col2" value="6"/> <output name="outfile" file="mv_result03.tabular"/> </test> <test> <param name="selected_function" value="learning_curve"/> <param name="estimator" value="linear_model.LassoCV()"/> <param name="has_estimator" value="yes"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="true" /> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="header2" value="true" /> <param name="col2" value="1"/> <output name="outfile" file="mv_result04.tabular"/> </test> <test> <param name="selected_function" value="permutation_test_score"/> <param name="estimator" value="linear_model.LassoCV()"/> <param name="has_estimator" value="yes"/> <param name="infile1" value="regression_train.tabular" ftype="tabular"/> <param name="col1" value="1,2,3,4,5"/> <param name="infile2" value="regression_train.tabular" ftype="tabular"/> <param name="col2" value="6"/> <output name="outfile" file="mv_result05.tabular"/> </test> <test> <param name="selected_function" value="validation_curve"/> <param name="estimator" value="svm.SVC(kernel="linear")"/> <param name="has_estimator" value="yes"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="true" /> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="header2" value="true" /> <param name="col2" value="1"/> <param name="return_type" value="test_scores"/> <output name="outfile" file="mv_result06.tabular"/> </test> <test> <param name="do_feature_selection" value="Yes"/> <param name="selected_algorithm" value="SelectKBest"/> <param name="score_func" value="chi2"/> <param name="selected_function" value="GridSearchCV"/> <param name="estimator" value="svm.SVR(kernel="linear")"/> <param name="has_estimator" value="yes"/> <param name="param_grid" value="[{'feature_selector__k': [3, 7], 'estimator__C': [1, 100]}]"/> <param name="return_type" value="best_score_"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="true" /> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="header2" value="true" /> <param name="col2" value="1"/> <output name="outfile" file="mv_result07.tabular"/> </test> </tests> <help> <![CDATA[ **What it does** This tool includes model validation functions to evaluate estimator performance in the cross-validation approach. This tool is based on sklearn.model_selection package. For information about classification metric functions and their parameter settings please refer to `Scikit-learn classification metrics`_. .. _`Scikit-learn classification metrics`: http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics ]]> </help> <expand macro="sklearn_citation"/> </tool>