# HG changeset patch
# User bgruening
# Date 1531468605 14400
# Node ID fd7a054ffdbdb7694fcfe7e46e5ac57782eed1d5
# Parent 57a7471292df1c31cd464abad85270410bd7b3e0
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit f54ff2ba2f8e7542d68966ce5a6b17d7f624ac48
diff -r 57a7471292df -r fd7a054ffdbd main_macros.xml
--- a/main_macros.xml Tue Jul 10 03:13:16 2018 -0400
+++ b/main_macros.xml Fri Jul 13 03:56:45 2018 -0400
@@ -35,7 +35,8 @@
if not options['threshold'] or options['threshold'] == 'None':
options['threshold'] = None
if 'extra_estimator' in inputs and inputs['extra_estimator']['has_estimator'] == 'no_load':
- fitted_estimator = pickle.load(open("inputs['extra_estimator']['fitted_estimator']", 'r'))
+ with open("inputs['extra_estimator']['fitted_estimator']", 'rb') as model_handler:
+ fitted_estimator = pickle.load(model_handler)
new_selector = selector(fitted_estimator, prefit=True, **options)
else:
estimator=inputs["estimator"]
@@ -83,7 +84,7 @@
parse_dates=True
)
else:
- X = mmread(open(file1, 'r'))
+ X = mmread(file1)
header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header2"] else None
column_option = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_2"]["selected_column_selector_option2"]
@@ -432,19 +433,6 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
@@ -472,13 +460,13 @@
-
+
-
+
@@ -553,11 +541,6 @@
-
-
-
-
-
+
+
+
+
+
+
+
+
+
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
@@ -892,6 +914,7 @@
+
@@ -1014,6 +1037,7 @@
+
@@ -1023,6 +1047,7 @@
+
@@ -1032,6 +1057,7 @@
+
@@ -1039,6 +1065,7 @@
+
@@ -1047,6 +1074,7 @@
+
diff -r 57a7471292df -r fd7a054ffdbd model_validation.xml
--- a/model_validation.xml Tue Jul 10 03:13:16 2018 -0400
+++ b/model_validation.xml Fri Jul 13 03:56:45 2018 -0400
@@ -22,7 +22,7 @@
import pickle
import numpy as np
import sklearn.model_selection
-from sklearn import svm, linear_model, ensemble
+from sklearn import svm, linear_model, ensemble, preprocessing
from sklearn.pipeline import Pipeline
@COLUMNS_FUNCTION@
@@ -30,7 +30,8 @@
@FEATURE_SELECTOR_FUNCTION@
input_json_path = sys.argv[1]
-params = json.load(open(input_json_path, "r"))
+with open(input_json_path, "r") as param_handler:
+ params = json.load(param_handler)
input_type = params["input_options"]["selected_input"]
if input_type=="tabular":
@@ -49,7 +50,7 @@
parse_dates=True
)
else:
- X = mmread(open("$input_options.infile1", 'r'))
+ X = mmread("$input_options.infile1")
header = 'infer' if params["input_options"]["header2"] else None
column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"]
@@ -75,10 +76,17 @@
pipeline_steps = []
+## Set up pre_processor and add to pipeline steps.
+if params['pre_processing']['do_pre_processing'] == 'Yes':
+ preprocessor = params["pre_processing"]["pre_processors"]["selected_pre_processor"]
+ pre_processor_options = params["pre_processing"]["pre_processors"]["options"]
+ my_class = getattr(preprocessing, preprocessor)
+ pipeline_steps.append( ('pre_processor', my_class(**pre_processor_options)) )
+
## Set up feature selector and add to pipeline steps.
if params['feature_selection']['do_feature_selection'] == 'Yes':
feature_selector = feature_selector(params['feature_selection']['feature_selection_algorithms'])
- pipeline_steps.append( ('feature_selector', feature_selector))
+ pipeline_steps.append( ('feature_selector', feature_selector) )
## Set up estimator and add to pipeline.
estimator=params["model_validation_functions"]["estimator"]
@@ -138,6 +146,19 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
@@ -352,7 +373,54 @@
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff -r 57a7471292df -r fd7a054ffdbd test-data/mv_result07.tabular
--- a/test-data/mv_result07.tabular Tue Jul 10 03:13:16 2018 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-0.7824428015300172