Mercurial > repos > bgruening > sklearn_nn_classifier
diff nn_classifier.xml @ 21:1d3447c2203c draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 17:48:25 +0000 |
parents | 699024d5c451 |
children | 22f0b9db4ea1 |
line wrap: on
line diff
--- a/nn_classifier.xml Thu Oct 01 20:23:20 2020 +0000 +++ b/nn_classifier.xml Tue Apr 13 17:48:25 2021 +0000 @@ -1,19 +1,19 @@ -<tool id="sklearn_nn_classifier" name="Nearest Neighbors Classification" version="@VERSION@"> +<tool id="sklearn_nn_classifier" name="Nearest Neighbors Classification" version="@VERSION@" profile="20.05"> <description></description> <macros> <import>main_macros.xml</import> </macros> - <expand macro="python_requirements"/> - <expand macro="macro_stdio"/> + <expand macro="python_requirements" /> + <expand macro="macro_stdio" /> <version_command>echo "@VERSION@"</version_command> <command><![CDATA[ python '$nnc_script' '$inputs' ]]> </command> <configfiles> - <inputs name="inputs"/> + <inputs name="inputs" /> <configfile name="nnc_script"> -<![CDATA[ + <![CDATA[ import sys import json import numpy as np @@ -68,13 +68,13 @@ </configfile> </configfiles> <inputs> - <expand macro="sl_Conditional" model="zip"><!--Todo: add sparse to targets--> + <expand macro="sl_Conditional" model="zip"> <!--Todo: add sparse to targets--> <param name="selected_algorithm" type="select" label="Classifier type"> <option value="nneighbors">Nearest Neighbors</option> <option value="ncentroid">Nearest Centroid</option> </param> <when value="nneighbors"> - <expand macro="sl_mixed_input"/> + <expand macro="sl_mixed_input" /> <conditional name="sampling_methods"> <param name="sampling_method" type="select" label="Neighbor selection method"> <option value="KNeighborsClassifier" selected="true">K-nearest neighbors</option> @@ -82,94 +82,91 @@ </param> <when value="KNeighborsClassifier"> <expand macro="nn_advanced_options"> - <param argument="n_neighbors" type="integer" optional="true" value="5" label="Number of neighbors" help=" "/> + <param argument="n_neighbors" type="integer" optional="true" value="5" label="Number of neighbors" help=" " /> </expand> </when> <when value="RadiusNeighborsClassifier"> <expand macro="nn_advanced_options"> - <param argument="radius" type="float" optional="true" value="1.0" label="Radius" - help="Range of parameter space to use by default for :meth ''radius_neighbors'' queries."/> + <param argument="radius" type="float" optional="true" value="1.0" label="Radius" help="Range of parameter space to use by default for :meth ''radius_neighbors'' queries." /> </expand> </when> </conditional> </when> <when value="ncentroid"> - <expand macro="sl_mixed_input"/> + <expand macro="sl_mixed_input" /> <section name="options" title="Advanced Options" expanded="False"> - <param argument="metric" type="text" optional="true" value="euclidean" label="Metric" - help="The metric to use when calculating distance between instances in a feature array."/> - <param argument="shrink_threshold" type="float" optional="true" value="" label="Shrink threshold" - help="Floating point number for shrinking centroids to remove features."/> + <param argument="metric" type="text" optional="true" value="euclidean" label="Metric" help="The metric to use when calculating distance between instances in a feature array." /> + <param argument="shrink_threshold" type="float" optional="true" value="" label="Shrink threshold" help="Floating point number for shrinking centroids to remove features." /> </section> </when> </expand> </inputs> - <expand macro="output"/> + <expand macro="output" /> <tests> <test> - <param name="infile1" value="train_set.tabular" ftype="tabular"/> - <param name="infile2" value="train_set.tabular" ftype="tabular"/> - <param name="header1" value="True"/> - <param name="header2" value="True"/> - <param name="col1" value="1,2,3,4"/> - <param name="col2" value="5"/> - <param name="selected_task" value="train"/> - <param name="selected_algorithm" value="nneighbors"/> + <param name="infile1" value="train_set.tabular" ftype="tabular" /> + <param name="infile2" value="train_set.tabular" ftype="tabular" /> + <param name="header1" value="True" /> + <param name="header2" value="True" /> + <param name="col1" value="1,2,3,4" /> + <param name="col2" value="5" /> + <param name="selected_task" value="train" /> + <param name="selected_algorithm" value="nneighbors" /> <param name="sampling_method" value="KNeighborsClassifier" /> <param name="algorithm" value="brute" /> - <output name="outfile_fit" file="nn_model01" compare="sim_size" delta="5"/> + <output name="outfile_fit" file="nn_model01" compare="sim_size" delta="5" /> </test> <test> - <param name="infile1" value="train_set.tabular" ftype="tabular"/> - <param name="infile2" value="train_set.tabular" ftype="tabular"/> - <param name="header1" value="True"/> - <param name="header2" value="True"/> - <param name="col1" value="1,2,3,4"/> - <param name="col2" value="5"/> - <param name="selected_task" value="train"/> - <param name="selected_algorithm" value="nneighbors"/> + <param name="infile1" value="train_set.tabular" ftype="tabular" /> + <param name="infile2" value="train_set.tabular" ftype="tabular" /> + <param name="header1" value="True" /> + <param name="header2" value="True" /> + <param name="col1" value="1,2,3,4" /> + <param name="col2" value="5" /> + <param name="selected_task" value="train" /> + <param name="selected_algorithm" value="nneighbors" /> <param name="sampling_method" value="RadiusNeighborsClassifier" /> - <output name="outfile_fit" file="nn_model02" compare="sim_size" delta="5"/> + <output name="outfile_fit" file="nn_model02" compare="sim_size" delta="5" /> </test> <test> - <param name="infile1" value="train_set.tabular" ftype="tabular"/> - <param name="infile2" value="train_set.tabular" ftype="tabular"/> - <param name="header1" value="True"/> - <param name="header2" value="True"/> - <param name="col1" value="1,2,3,4"/> - <param name="col2" value="5"/> - <param name="selected_task" value="train"/> - <param name="selected_algorithm" value="ncentroid"/> - <output name="outfile_fit" file="nn_model03" compare="sim_size" delta="5"/> + <param name="infile1" value="train_set.tabular" ftype="tabular" /> + <param name="infile2" value="train_set.tabular" ftype="tabular" /> + <param name="header1" value="True" /> + <param name="header2" value="True" /> + <param name="col1" value="1,2,3,4" /> + <param name="col2" value="5" /> + <param name="selected_task" value="train" /> + <param name="selected_algorithm" value="ncentroid" /> + <output name="outfile_fit" file="nn_model03" compare="sim_size" delta="5" /> </test> <test> - <param name="infile_model" value="nn_model01" ftype="zip"/> - <param name="infile_data" value="test_set.tabular" ftype="tabular"/> - <param name="header" value="True"/> - <param name="selected_task" value="load"/> - <output name="outfile_predict" file="nn_prediction_result01.tabular"/> + <param name="infile_model" value="nn_model01" ftype="zip" /> + <param name="infile_data" value="test_set.tabular" ftype="tabular" /> + <param name="header" value="True" /> + <param name="selected_task" value="load" /> + <output name="outfile_predict" file="nn_prediction_result01.tabular" /> </test> <test> - <param name="infile_model" value="nn_model02" ftype="zip"/> - <param name="infile_data" value="test_set.tabular" ftype="tabular"/> - <param name="header" value="True"/> - <param name="selected_task" value="load"/> - <output name="outfile_predict" file="nn_prediction_result02.tabular"/> + <param name="infile_model" value="nn_model02" ftype="zip" /> + <param name="infile_data" value="test_set.tabular" ftype="tabular" /> + <param name="header" value="True" /> + <param name="selected_task" value="load" /> + <output name="outfile_predict" file="nn_prediction_result02.tabular" /> </test> <test> - <param name="infile_model" value="nn_model03" ftype="zip"/> - <param name="infile_data" value="test_set.tabular" ftype="tabular"/> - <param name="header" value="True"/> - <param name="selected_task" value="load"/> - <output name="outfile_predict" file="nn_prediction_result03.tabular"/> + <param name="infile_model" value="nn_model03" ftype="zip" /> + <param name="infile_data" value="test_set.tabular" ftype="tabular" /> + <param name="header" value="True" /> + <param name="selected_task" value="load" /> + <output name="outfile_predict" file="nn_prediction_result03.tabular" /> </test> </tests> <help><![CDATA[ **What it does** This module implements the k-nearest neighbors classification algorithms. For more information check http://scikit-learn.org/stable/modules/neighbors.html - ]]></help> - <expand macro="sklearn_citation"/> + ]]> </help> + <expand macro="sklearn_citation" /> </tool>