Mercurial > repos > bgruening > sklearn_nn_classifier
diff simple_model_fit.py @ 21:1d3447c2203c draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 17:48:25 +0000 |
parents | 55c7d3e58eae |
children | 34d31bd995e9 |
line wrap: on
line diff
--- a/simple_model_fit.py Thu Oct 01 20:23:20 2020 +0000 +++ b/simple_model_fit.py Tue Apr 13 17:48:25 2021 +0000 @@ -4,10 +4,11 @@ import pickle from galaxy_ml.utils import load_model, read_columns +from scipy.io import mmread from sklearn.pipeline import Pipeline -N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) +N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) # TODO import from galaxy_ml.utils in future versions @@ -20,33 +21,35 @@ ------ Cleaned estimator object """ - ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', - 'ReduceLROnPlateau', 'CSVLogger', 'None') + ALLOWED_CALLBACKS = ( + "EarlyStopping", + "TerminateOnNaN", + "ReduceLROnPlateau", + "CSVLogger", + "None", + ) estimator_params = estimator.get_params() for name, p in estimator_params.items(): # all potential unauthorized file write - if name == 'memory' or name.endswith('__memory') \ - or name.endswith('_path'): + if name == "memory" or name.endswith("__memory") or name.endswith("_path"): new_p = {name: None} estimator.set_params(**new_p) - elif n_jobs is not None and (name == 'n_jobs' or - name.endswith('__n_jobs')): + elif n_jobs is not None and (name == 'n_jobs' or name.endswith('__n_jobs')): new_p = {name: n_jobs} estimator.set_params(**new_p) - elif name.endswith('callbacks'): + elif name.endswith("callbacks"): for cb in p: - cb_type = cb['callback_selection']['callback_type'] + cb_type = cb["callback_selection"]["callback_type"] if cb_type not in ALLOWED_CALLBACKS: - raise ValueError( - "Prohibited callback type: %s!" % cb_type) + raise ValueError("Prohibited callback type: %s!" % cb_type) return estimator def _get_X_y(params, infile1, infile2): - """ read from inputs and output X and y + """read from inputs and output X and y Parameters ---------- @@ -61,35 +64,40 @@ # store read dataframe object loaded_df = {} - input_type = params['input_options']['selected_input'] + input_type = params["input_options"]["selected_input"] # tabular input - if input_type == 'tabular': - header = 'infer' if params['input_options']['header1'] else None - column_option = (params['input_options']['column_selector_options_1'] - ['selected_column_selector_option']) - if column_option in ['by_index_number', 'all_but_by_index_number', - 'by_header_name', 'all_but_by_header_name']: - c = params['input_options']['column_selector_options_1']['col1'] + if input_type == "tabular": + header = "infer" if params["input_options"]["header1"] else None + column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] + if column_option in [ + "by_index_number", + "all_but_by_index_number", + "by_header_name", + "all_but_by_header_name", + ]: + c = params["input_options"]["column_selector_options_1"]["col1"] else: c = None df_key = infile1 + repr(header) - df = pd.read_csv(infile1, sep='\t', header=header, - parse_dates=True) + df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = df X = read_columns(df, c=c, c_option=column_option).astype(float) # sparse input - elif input_type == 'sparse': - X = mmread(open(infile1, 'r')) + elif input_type == "sparse": + X = mmread(open(infile1, "r")) # Get target y - header = 'infer' if params['input_options']['header2'] else None - column_option = (params['input_options']['column_selector_options_2'] - ['selected_column_selector_option2']) - if column_option in ['by_index_number', 'all_but_by_index_number', - 'by_header_name', 'all_but_by_header_name']: - c = params['input_options']['column_selector_options_2']['col2'] + header = "infer" if params["input_options"]["header2"] else None + column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] + if column_option in [ + "by_index_number", + "all_but_by_index_number", + "by_header_name", + "all_but_by_header_name", + ]: + c = params["input_options"]["column_selector_options_2"]["col2"] else: c = None @@ -97,26 +105,23 @@ if df_key in loaded_df: infile2 = loaded_df[df_key] else: - infile2 = pd.read_csv(infile2, sep='\t', - header=header, parse_dates=True) + infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = infile2 - y = read_columns( - infile2, - c=c, - c_option=column_option, - sep='\t', - header=header, - parse_dates=True) + y = read_columns(infile2, + c=c, + c_option=column_option, + sep='\t', + header=header, + parse_dates=True) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() return X, y -def main(inputs, infile_estimator, infile1, infile2, out_object, - out_weights=None): - """ main +def main(inputs, infile_estimator, infile1, infile2, out_object, out_weights=None): + """main Parameters ---------- @@ -139,38 +144,37 @@ File path for output of weights """ - with open(inputs, 'r') as param_handler: + with open(inputs, "r") as param_handler: params = json.load(param_handler) # load model - with open(infile_estimator, 'rb') as est_handler: + with open(infile_estimator, "rb") as est_handler: estimator = load_model(est_handler) estimator = clean_params(estimator, n_jobs=N_JOBS) X_train, y_train = _get_X_y(params, infile1, infile2) estimator.fit(X_train, y_train) - + main_est = estimator if isinstance(main_est, Pipeline): main_est = main_est.steps[-1][-1] - if hasattr(main_est, 'model_') \ - and hasattr(main_est, 'save_weights'): + if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): if out_weights: main_est.save_weights(out_weights) del main_est.model_ del main_est.fit_params del main_est.model_class_ - del main_est.validation_data - if getattr(main_est, 'data_generator_', None): + if getattr(main_est, "validation_data", None): + del main_est.validation_data + if getattr(main_est, "data_generator_", None): del main_est.data_generator_ - with open(out_object, 'wb') as output_handler: - pickle.dump(estimator, output_handler, - pickle.HIGHEST_PROTOCOL) + with open(out_object, "wb") as output_handler: + pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL) -if __name__ == '__main__': +if __name__ == "__main__": aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-X", "--infile_estimator", dest="infile_estimator") @@ -180,5 +184,11 @@ aparser.add_argument("-t", "--out_weights", dest="out_weights") args = aparser.parse_args() - main(args.inputs, args.infile_estimator, args.infile1, - args.infile2, args.out_object, args.out_weights) + main( + args.inputs, + args.infile_estimator, + args.infile1, + args.infile2, + args.out_object, + args.out_weights, + )