Mercurial > repos > bgruening > sklearn_nn_classifier
diff nn_classifier.xml @ 27:22f0b9db4ea1 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author | bgruening |
---|---|
date | Wed, 09 Aug 2023 12:57:05 +0000 |
parents | 1d3447c2203c |
children |
line wrap: on
line diff
--- a/nn_classifier.xml Thu Aug 11 09:54:23 2022 +0000 +++ b/nn_classifier.xml Wed Aug 09 12:57:05 2023 +0000 @@ -1,4 +1,4 @@ -<tool id="sklearn_nn_classifier" name="Nearest Neighbors Classification" version="@VERSION@" profile="20.05"> +<tool id="sklearn_nn_classifier" name="Nearest Neighbors Classification" version="@VERSION@" profile="@PROFILE@"> <description></description> <macros> <import>main_macros.xml</import> @@ -19,9 +19,9 @@ import numpy as np import sklearn.neighbors import pandas -import pickle -from galaxy_ml.utils import load_model, get_X_y +from galaxy_ml.model_persist import dump_model_to_h5, load_model_from_h5 +from galaxy_ml.utils import clean_params, get_X_y input_json_path = sys.argv[1] @@ -30,8 +30,8 @@ #if $selected_tasks.selected_task == "load": -with open("$infile_model", 'rb') as model_handler: - classifier_object = load_model(model_handler) +classifier_object = load_model_from_h5('$infile_model') +classifier_object = clean_params(classifier_object) header = 'infer' if params["selected_tasks"]["header"] else None data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=header, index_col=None, parse_dates=True, encoding=None) @@ -59,8 +59,7 @@ classifier_object = my_class(**options) classifier_object.fit(X, y) -with open("$outfile_fit", 'wb') as out_handler: - pickle.dump(classifier_object, out_handler) +dump_model_to_h5(classifier_object, '$outfile_fit') #end if @@ -68,7 +67,7 @@ </configfile> </configfiles> <inputs> - <expand macro="sl_Conditional" model="zip"> <!--Todo: add sparse to targets--> + <expand macro="sl_Conditional" model="h5mlm"> <!--Todo: add sparse to targets--> <param name="selected_algorithm" type="select" label="Classifier type"> <option value="nneighbors">Nearest Neighbors</option> <option value="ncentroid">Nearest Centroid</option> @@ -128,6 +127,7 @@ <param name="selected_task" value="train" /> <param name="selected_algorithm" value="nneighbors" /> <param name="sampling_method" value="RadiusNeighborsClassifier" /> + <param name="algorithm" value="brute" /> <output name="outfile_fit" file="nn_model02" compare="sim_size" delta="5" /> </test> <test> @@ -142,21 +142,21 @@ <output name="outfile_fit" file="nn_model03" compare="sim_size" delta="5" /> </test> <test> - <param name="infile_model" value="nn_model01" ftype="zip" /> + <param name="infile_model" value="nn_model01" ftype="h5mlm" /> <param name="infile_data" value="test_set.tabular" ftype="tabular" /> <param name="header" value="True" /> <param name="selected_task" value="load" /> <output name="outfile_predict" file="nn_prediction_result01.tabular" /> </test> <test> - <param name="infile_model" value="nn_model02" ftype="zip" /> + <param name="infile_model" value="nn_model02" ftype="h5mlm" /> <param name="infile_data" value="test_set.tabular" ftype="tabular" /> <param name="header" value="True" /> <param name="selected_task" value="load" /> <output name="outfile_predict" file="nn_prediction_result02.tabular" /> </test> <test> - <param name="infile_model" value="nn_model03" ftype="zip" /> + <param name="infile_model" value="nn_model03" ftype="h5mlm" /> <param name="infile_data" value="test_set.tabular" ftype="tabular" /> <param name="header" value="True" /> <param name="selected_task" value="load" />