Mercurial > repos > bgruening > sklearn_nn_classifier
diff stacking_ensembles.py @ 10:e9ba818e7877 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit c0a3a186966888e5787335a7628bf0a4382637e7
author | bgruening |
---|---|
date | Tue, 14 May 2019 18:09:43 -0400 |
parents | |
children | d0efc68a3ddb |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/stacking_ensembles.py Tue May 14 18:09:43 2019 -0400 @@ -0,0 +1,128 @@ +import argparse +import json +import pandas as pd +import pickle +import xgboost +import warnings +from sklearn import (cluster, compose, decomposition, ensemble, + feature_extraction, feature_selection, + gaussian_process, kernel_approximation, metrics, + model_selection, naive_bayes, neighbors, + pipeline, preprocessing, svm, linear_model, + tree, discriminant_analysis) +from sklearn.model_selection._split import check_cv +from feature_selectors import (DyRFE, DyRFECV, + MyPipeline, MyimbPipeline) +from iraps_classifier import (IRAPSCore, IRAPSClassifier, + BinarizeTargetClassifier, + BinarizeTargetRegressor) +from preprocessors import Z_RandomOverSampler +from utils import load_model, get_cv, get_estimator, get_search_params + +from mlxtend.regressor import StackingCVRegressor, StackingRegressor +from mlxtend.classifier import StackingCVClassifier, StackingClassifier + + +warnings.filterwarnings('ignore') + +N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) + + +def main(inputs_path, output_obj, base_paths=None, meta_path=None, + outfile_params=None): + """ + Parameter + --------- + inputs_path : str + File path for Galaxy parameters + + output_obj : str + File path for ensemble estimator ouput + + base_paths : str + File path or paths concatenated by comma. + + meta_path : str + File path + + outfile_params : str + File path for params output + """ + with open(inputs_path, 'r') as param_handler: + params = json.load(param_handler) + + base_estimators = [] + for idx, base_file in enumerate(base_paths.split(',')): + if base_file and base_file != 'None': + with open(base_file, 'rb') as handler: + model = load_model(handler) + else: + estimator_json = (params['base_est_builder'][idx] + ['estimator_selector']) + model = get_estimator(estimator_json) + base_estimators.append(model) + + if meta_path: + with open(meta_path, 'rb') as f: + meta_estimator = load_model(f) + else: + estimator_json = params['meta_estimator']['estimator_selector'] + meta_estimator = get_estimator(estimator_json) + + options = params['algo_selection']['options'] + + cv_selector = options.pop('cv_selector', None) + if cv_selector: + splitter, groups = get_cv(cv_selector) + options['cv'] = splitter + # set n_jobs + options['n_jobs'] = N_JOBS + + if params['algo_selection']['estimator_type'] == 'StackingCVClassifier': + ensemble_estimator = StackingCVClassifier( + classifiers=base_estimators, + meta_classifier=meta_estimator, + **options) + + elif params['algo_selection']['estimator_type'] == 'StackingClassifier': + ensemble_estimator = StackingClassifier( + classifiers=base_estimators, + meta_classifier=meta_estimator, + **options) + + elif params['algo_selection']['estimator_type'] == 'StackingCVRegressor': + ensemble_estimator = StackingCVRegressor( + regressors=base_estimators, + meta_regressor=meta_estimator, + **options) + + else: + ensemble_estimator = StackingRegressor( + regressors=base_estimators, + meta_regressor=meta_estimator, + **options) + + print(ensemble_estimator) + for base_est in base_estimators: + print(base_est) + + with open(output_obj, 'wb') as out_handler: + pickle.dump(ensemble_estimator, out_handler, pickle.HIGHEST_PROTOCOL) + + if params['get_params'] and outfile_params: + results = get_search_params(ensemble_estimator) + df = pd.DataFrame(results, columns=['', 'Parameter', 'Value']) + df.to_csv(outfile_params, sep='\t', index=False) + + +if __name__ == '__main__': + aparser = argparse.ArgumentParser() + aparser.add_argument("-b", "--bases", dest="bases") + aparser.add_argument("-m", "--meta", dest="meta") + aparser.add_argument("-i", "--inputs", dest="inputs") + aparser.add_argument("-o", "--outfile", dest="outfile") + aparser.add_argument("-p", "--outfile_params", dest="outfile_params") + args = aparser.parse_args() + + main(args.inputs, args.outfile, base_paths=args.bases, + meta_path=args.meta, outfile_params=args.outfile_params)