# HG changeset patch
# User bgruening
# Date 1570003080 14400
# Node ID 9871a634540f53939963c5a30855c4e01072f668
# Parent  fbc38059bb8fd3e90ab9b9b95d431ba7677cce9f
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 02087ce2966cf8b4aac9197a41171e7f986c11d1-dirty"
diff -r fbc38059bb8f -r 9871a634540f main_macros.xml
--- a/main_macros.xml	Fri Sep 13 12:18:53 2019 -0400
+++ b/main_macros.xml	Wed Oct 02 03:58:00 2019 -0400
@@ -421,27 +421,46 @@
 
   
     
-      
-          
-          
-          
-          
-      
-      
-          
-      
-      
-          
-      
-      
-          
-      
-      
-          
-      
+        
+        
     
   
 
+  
+    
+        
+            
+            
+        
+        
+            
+                
+            
+            
+                
+            
+        
+    
+  
+
+  
+    
+        
+        
+        
+    
+  
+
+  
+    
+        
+    
+    
+        
+    
+    
+  
+
   
     
     
diff -r fbc38059bb8f -r 9871a634540f ml_visualization_ex.py
--- a/ml_visualization_ex.py	Fri Sep 13 12:18:53 2019 -0400
+++ b/ml_visualization_ex.py	Wed Oct 02 03:58:00 2019 -0400
@@ -146,7 +146,8 @@
             precision["micro"], recall["micro"], _ = precision_recall_curve(
                 df1.values.ravel(), df2.values.ravel(), pos_label=pos_label)
             ap['micro'] = average_precision_score(
-                df1.values, df2.values, average='micro', pos_label=pos_label or 1)
+                df1.values, df2.values, average='micro',
+                pos_label=pos_label or 1)
 
         data = []
         for key in precision.keys():
@@ -201,7 +202,7 @@
             )
             data.append(trace)
 
-        trace = go.Scatter(x=[0, 1], y=[0, 1], 
+        trace = go.Scatter(x=[0, 1], y=[0, 1],
                            mode='lines', 
                            line=dict(color='black', dash='dash'),
                            showlegend=False)
diff -r fbc38059bb8f -r 9871a634540f stacking_ensembles.py
--- a/stacking_ensembles.py	Fri Sep 13 12:18:53 2019 -0400
+++ b/stacking_ensembles.py	Wed Oct 02 03:58:00 2019 -0400
@@ -11,7 +11,7 @@
 from sklearn import ensemble
 
 from galaxy_ml.utils import (load_model, get_cv, get_estimator,
-                          get_search_params)
+                             get_search_params)
 
 
 warnings.filterwarnings('ignore')