Mercurial > repos > bgruening > sklearn_numeric_clustering
comparison keras_train_and_eval.py @ 40:06d772036a62 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author | bgruening |
---|---|
date | Wed, 09 Aug 2023 13:11:48 +0000 |
parents | 73e7f1c76ece |
children | bb9fc9d46ea4 |
comparison
equal
deleted
inserted
replaced
39:7dd3fb35904f | 40:06d772036a62 |
---|---|
1 import argparse | 1 import argparse |
2 import json | 2 import json |
3 import os | 3 import os |
4 import pickle | |
5 import warnings | 4 import warnings |
6 from itertools import chain | 5 from itertools import chain |
7 | 6 |
8 import joblib | 7 import joblib |
9 import numpy as np | 8 import numpy as np |
10 import pandas as pd | 9 import pandas as pd |
11 from galaxy_ml.externals.selene_sdk.utils import compute_score | 10 from galaxy_ml.keras_galaxy_models import ( |
12 from galaxy_ml.keras_galaxy_models import _predict_generator | 11 _predict_generator, |
12 KerasGBatchClassifier, | |
13 ) | |
14 from galaxy_ml.model_persist import dump_model_to_h5, load_model_from_h5 | |
13 from galaxy_ml.model_validations import train_test_split | 15 from galaxy_ml.model_validations import train_test_split |
14 from galaxy_ml.utils import (clean_params, get_main_estimator, | 16 from galaxy_ml.utils import ( |
15 get_module, get_scoring, load_model, read_columns, | 17 clean_params, |
16 SafeEval, try_get_attr) | 18 gen_compute_scores, |
19 get_main_estimator, | |
20 get_module, | |
21 get_scoring, | |
22 read_columns, | |
23 SafeEval | |
24 ) | |
17 from scipy.io import mmread | 25 from scipy.io import mmread |
18 from sklearn.metrics.scorer import _check_multimetric_scoring | 26 from sklearn.metrics._scorer import _check_multimetric_scoring |
19 from sklearn.model_selection import _search, _validation | |
20 from sklearn.model_selection._validation import _score | 27 from sklearn.model_selection._validation import _score |
21 from sklearn.pipeline import Pipeline | 28 from sklearn.utils import _safe_indexing, indexable |
22 from sklearn.utils import indexable, safe_indexing | |
23 | |
24 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | |
25 setattr(_search, "_fit_and_score", _fit_and_score) | |
26 setattr(_validation, "_fit_and_score", _fit_and_score) | |
27 | 29 |
28 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) | 30 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) |
29 CACHE_DIR = os.path.join(os.getcwd(), "cached") | 31 CACHE_DIR = os.path.join(os.getcwd(), "cached") |
30 del os | 32 NON_SEARCHABLE = ( |
31 NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") | 33 "n_jobs", |
34 "pre_dispatch", | |
35 "memory", | |
36 "_path", | |
37 "_dir", | |
38 "nthread", | |
39 "callbacks", | |
40 ) | |
32 ALLOWED_CALLBACKS = ( | 41 ALLOWED_CALLBACKS = ( |
33 "EarlyStopping", | 42 "EarlyStopping", |
34 "TerminateOnNaN", | 43 "TerminateOnNaN", |
35 "ReduceLROnPlateau", | 44 "ReduceLROnPlateau", |
36 "CSVLogger", | 45 "CSVLogger", |
94 index_arr = np.arange(n_samples) | 103 index_arr = np.arange(n_samples) |
95 test = index_arr[np.isin(groups, group_names)] | 104 test = index_arr[np.isin(groups, group_names)] |
96 train = index_arr[~np.isin(groups, group_names)] | 105 train = index_arr[~np.isin(groups, group_names)] |
97 rval = list( | 106 rval = list( |
98 chain.from_iterable( | 107 chain.from_iterable( |
99 (safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays | 108 (_safe_indexing(a, train), _safe_indexing(a, test)) for a in new_arrays |
100 ) | 109 ) |
101 ) | 110 ) |
102 else: | 111 else: |
103 rval = train_test_split(*new_arrays, **kwargs) | 112 rval = train_test_split(*new_arrays, **kwargs) |
104 | 113 |
106 rval[pos * 2: 2] = [None, None] | 115 rval[pos * 2: 2] = [None, None] |
107 | 116 |
108 return rval | 117 return rval |
109 | 118 |
110 | 119 |
111 def _evaluate(y_true, pred_probas, scorer, is_multimetric=True): | 120 def _evaluate_keras_and_sklearn_scores( |
112 """output scores based on input scorer | 121 estimator, |
122 data_generator, | |
123 X, | |
124 y=None, | |
125 sk_scoring=None, | |
126 steps=None, | |
127 batch_size=32, | |
128 return_predictions=False, | |
129 ): | |
130 """output scores for bother keras and sklearn metrics | |
113 | 131 |
114 Parameters | 132 Parameters |
115 ---------- | 133 ----------- |
116 y_true : array | 134 estimator : object |
117 True label or target values | 135 Fitted `galaxy_ml.keras_galaxy_models.KerasGBatchClassifier`. |
118 pred_probas : array | 136 data_generator : object |
119 Prediction values, probability for classification problem | 137 From `galaxy_ml.preprocessors.ImageDataFrameBatchGenerator`. |
120 scorer : dict | 138 X : 2-D array |
121 dict of `sklearn.metrics.scorer.SCORER` | 139 Contains indecies of images that need to be evaluated. |
122 is_multimetric : bool, default is True | 140 y : None |
141 Target value. | |
142 sk_scoring : dict | |
143 Galaxy tool input parameters. | |
144 steps : integer or None | |
145 Evaluation/prediction steps before stop. | |
146 batch_size : integer | |
147 Number of samples in a batch | |
148 return_predictions : bool, default is False | |
149 Whether to return predictions and true labels. | |
123 """ | 150 """ |
124 if y_true.ndim == 1 or y_true.shape[-1] == 1: | 151 scores = {} |
125 pred_probas = pred_probas.ravel() | 152 |
126 pred_labels = (pred_probas > 0.5).astype("int32") | 153 generator = data_generator.flow(X, y=y, batch_size=batch_size) |
127 targets = y_true.ravel().astype("int32") | 154 # keras metrics evaluation |
128 if not is_multimetric: | 155 # handle scorer, convert to scorer dict |
129 preds = ( | 156 generator.reset() |
130 pred_labels | 157 score_results = estimator.model_.evaluate_generator(generator, steps=steps) |
131 if scorer.__class__.__name__ == "_PredictScorer" | 158 metrics_names = estimator.model_.metrics_names |
132 else pred_probas | 159 if not isinstance(metrics_names, list): |
133 ) | 160 scores[metrics_names] = score_results |
134 score = scorer._score_func(targets, preds, **scorer._kwargs) | 161 else: |
135 | 162 scores = dict(zip(metrics_names, score_results)) |
136 return score | 163 |
137 else: | 164 if sk_scoring["primary_scoring"] == "default" and not return_predictions: |
138 scores = {} | 165 return scores |
139 for name, one_scorer in scorer.items(): | 166 |
140 preds = ( | 167 generator.reset() |
141 pred_labels | 168 predictions, y_true = _predict_generator(estimator.model_, generator, steps=steps) |
142 if one_scorer.__class__.__name__ == "_PredictScorer" | 169 |
143 else pred_probas | 170 # for sklearn metrics |
144 ) | 171 if sk_scoring["primary_scoring"] != "default": |
145 score = one_scorer._score_func(targets, preds, **one_scorer._kwargs) | 172 scorer = get_scoring(sk_scoring) |
146 scores[name] = score | 173 if not isinstance(scorer, (dict, list)): |
147 | 174 scorer = [sk_scoring["primary_scoring"]] |
148 # TODO: multi-class metrics | 175 scorer = _check_multimetric_scoring(estimator, scoring=scorer) |
149 # multi-label | 176 sk_scores = gen_compute_scores(y_true, predictions, scorer) |
150 else: | 177 scores.update(sk_scores) |
151 pred_labels = (pred_probas > 0.5).astype("int32") | 178 |
152 targets = y_true.astype("int32") | 179 if return_predictions: |
153 if not is_multimetric: | 180 return scores, predictions, y_true |
154 preds = ( | 181 else: |
155 pred_labels | 182 return scores, None, None |
156 if scorer.__class__.__name__ == "_PredictScorer" | |
157 else pred_probas | |
158 ) | |
159 score, _ = compute_score(preds, targets, scorer._score_func) | |
160 return score | |
161 else: | |
162 scores = {} | |
163 for name, one_scorer in scorer.items(): | |
164 preds = ( | |
165 pred_labels | |
166 if one_scorer.__class__.__name__ == "_PredictScorer" | |
167 else pred_probas | |
168 ) | |
169 score, _ = compute_score(preds, targets, one_scorer._score_func) | |
170 scores[name] = score | |
171 | |
172 return scores | |
173 | 183 |
174 | 184 |
175 def main( | 185 def main( |
176 inputs, | 186 inputs, |
177 infile_estimator, | 187 infile_estimator, |
178 infile1, | 188 infile1, |
179 infile2, | 189 infile2, |
180 outfile_result, | 190 outfile_result, |
181 outfile_object=None, | 191 outfile_object=None, |
182 outfile_weights=None, | |
183 outfile_y_true=None, | 192 outfile_y_true=None, |
184 outfile_y_preds=None, | 193 outfile_y_preds=None, |
185 groups=None, | 194 groups=None, |
186 ref_seq=None, | 195 ref_seq=None, |
187 intervals=None, | 196 intervals=None, |
190 ): | 199 ): |
191 """ | 200 """ |
192 Parameter | 201 Parameter |
193 --------- | 202 --------- |
194 inputs : str | 203 inputs : str |
195 File path to galaxy tool parameter | 204 File path to galaxy tool parameter. |
196 | 205 |
197 infile_estimator : str | 206 infile_estimator : str |
198 File path to estimator | 207 File path to estimator. |
199 | 208 |
200 infile1 : str | 209 infile1 : str |
201 File path to dataset containing features | 210 File path to dataset containing features. |
202 | 211 |
203 infile2 : str | 212 infile2 : str |
204 File path to dataset containing target values | 213 File path to dataset containing target values. |
205 | 214 |
206 outfile_result : str | 215 outfile_result : str |
207 File path to save the results, either cv_results or test result | 216 File path to save the results, either cv_results or test result. |
208 | 217 |
209 outfile_object : str, optional | 218 outfile_object : str, optional |
210 File path to save searchCV object | 219 File path to save searchCV object. |
211 | |
212 outfile_weights : str, optional | |
213 File path to save deep learning model weights | |
214 | 220 |
215 outfile_y_true : str, optional | 221 outfile_y_true : str, optional |
216 File path to target values for prediction | 222 File path to target values for prediction. |
217 | 223 |
218 outfile_y_preds : str, optional | 224 outfile_y_preds : str, optional |
219 File path to save deep learning model weights | 225 File path to save predictions. |
220 | 226 |
221 groups : str | 227 groups : str |
222 File path to dataset containing groups labels | 228 File path to dataset containing groups labels. |
223 | 229 |
224 ref_seq : str | 230 ref_seq : str |
225 File path to dataset containing genome sequence file | 231 File path to dataset containing genome sequence file. |
226 | 232 |
227 intervals : str | 233 intervals : str |
228 File path to dataset containing interval file | 234 File path to dataset containing interval file. |
229 | 235 |
230 targets : str | 236 targets : str |
231 File path to dataset compressed target bed file | 237 File path to dataset compressed target bed file. |
232 | 238 |
233 fasta_path : str | 239 fasta_path : str |
234 File path to dataset containing fasta file | 240 File path to dataset containing fasta file. |
235 """ | 241 """ |
236 warnings.simplefilter("ignore") | 242 warnings.simplefilter("ignore") |
237 | 243 |
238 with open(inputs, "r") as param_handler: | 244 with open(inputs, "r") as param_handler: |
239 params = json.load(param_handler) | 245 params = json.load(param_handler) |
240 | 246 |
241 # load estimator | 247 # load estimator |
242 with open(infile_estimator, "rb") as estimator_handler: | 248 estimator = load_model_from_h5(infile_estimator) |
243 estimator = load_model(estimator_handler) | |
244 | 249 |
245 estimator = clean_params(estimator) | 250 estimator = clean_params(estimator) |
246 | 251 |
247 # swap hyperparameter | 252 # swap hyperparameter |
248 swapping = params["experiment_schemes"]["hyperparams_swapping"] | 253 swapping = params["experiment_schemes"]["hyperparams_swapping"] |
331 else: | 336 else: |
332 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | 337 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) |
333 loaded_df[df_key] = infile2 | 338 loaded_df[df_key] = infile2 |
334 | 339 |
335 y = read_columns( | 340 y = read_columns( |
336 infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True | 341 infile2, |
342 c=c, | |
343 c_option=column_option, | |
344 sep="\t", | |
345 header=header, | |
346 parse_dates=True, | |
337 ) | 347 ) |
338 if len(y.shape) == 2 and y.shape[1] == 1: | 348 if len(y.shape) == 2 and y.shape[1] == 1: |
339 y = y.ravel() | 349 y = y.ravel() |
340 if input_type == "refseq_and_interval": | 350 if input_type == "refseq_and_interval": |
341 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) | 351 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) |
385 if main_est.__class__.__name__ == "IRAPSClassifier": | 395 if main_est.__class__.__name__ == "IRAPSClassifier": |
386 main_est.set_params(memory=memory) | 396 main_est.set_params(memory=memory) |
387 | 397 |
388 # handle scorer, convert to scorer dict | 398 # handle scorer, convert to scorer dict |
389 scoring = params["experiment_schemes"]["metrics"]["scoring"] | 399 scoring = params["experiment_schemes"]["metrics"]["scoring"] |
390 if scoring is not None: | |
391 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) | |
392 # Check if secondary_scoring is specified | |
393 secondary_scoring = scoring.get("secondary_scoring", None) | |
394 if secondary_scoring is not None: | |
395 # If secondary_scoring is specified, convert the list into comman separated string | |
396 scoring["secondary_scoring"] = ",".join(scoring["secondary_scoring"]) | |
397 | |
398 scorer = get_scoring(scoring) | 400 scorer = get_scoring(scoring) |
399 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | 401 if not isinstance(scorer, (dict, list)): |
402 scorer = [scoring["primary_scoring"]] | |
403 scorer = _check_multimetric_scoring(estimator, scoring=scorer) | |
400 | 404 |
401 # handle test (first) split | 405 # handle test (first) split |
402 test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] | 406 test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] |
403 | 407 |
404 if test_split_options["shuffle"] == "group": | 408 if test_split_options["shuffle"] == "group": |
409 else: | 413 else: |
410 raise ValueError( | 414 raise ValueError( |
411 "Stratified shuffle split is not " "applicable on empty target values!" | 415 "Stratified shuffle split is not " "applicable on empty target values!" |
412 ) | 416 ) |
413 | 417 |
414 ( | 418 X_train, X_test, y_train, y_test, groups_train, groups_test = train_test_split_none( |
415 X_train, | 419 X, y, groups, **test_split_options |
416 X_test, | 420 ) |
417 y_train, | |
418 y_test, | |
419 groups_train, | |
420 _groups_test, | |
421 ) = train_test_split_none(X, y, groups, **test_split_options) | |
422 | 421 |
423 exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] | 422 exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] |
424 | 423 |
425 # handle validation (second) split | 424 # handle validation (second) split |
426 if exp_scheme == "train_val_test": | 425 if exp_scheme == "train_val_test": |
441 X_train, | 440 X_train, |
442 X_val, | 441 X_val, |
443 y_train, | 442 y_train, |
444 y_val, | 443 y_val, |
445 groups_train, | 444 groups_train, |
446 _groups_val, | 445 groups_val, |
447 ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) | 446 ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) |
448 | 447 |
449 # train and eval | 448 # train and eval |
450 if hasattr(estimator, "validation_data"): | 449 if hasattr(estimator, "config") and hasattr(estimator, "model_type"): |
451 if exp_scheme == "train_val_test": | 450 if exp_scheme == "train_val_test": |
452 estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) | 451 estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) |
453 else: | 452 else: |
454 estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) | 453 estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) |
455 else: | 454 else: |
456 estimator.fit(X_train, y_train) | 455 estimator.fit(X_train, y_train) |
457 | 456 |
458 if hasattr(estimator, "evaluate"): | 457 if isinstance(estimator, KerasGBatchClassifier): |
458 scores = {} | |
459 steps = estimator.prediction_steps | 459 steps = estimator.prediction_steps |
460 batch_size = estimator.batch_size | 460 batch_size = estimator.batch_size |
461 generator = estimator.data_generator_.flow( | 461 data_generator = estimator.data_generator_ |
462 X_test, y=y_test, batch_size=batch_size | 462 |
463 scores, predictions, y_true = _evaluate_keras_and_sklearn_scores( | |
464 estimator, | |
465 data_generator, | |
466 X_test, | |
467 y=y_test, | |
468 sk_scoring=scoring, | |
469 steps=steps, | |
470 batch_size=batch_size, | |
471 return_predictions=bool(outfile_y_true), | |
463 ) | 472 ) |
464 predictions, y_true = _predict_generator( | 473 |
465 estimator.model_, generator, steps=steps | 474 else: |
466 ) | 475 scores = {} |
467 scores = _evaluate(y_true, predictions, scorer, is_multimetric=True) | 476 if hasattr(estimator, "model_") and hasattr(estimator.model_, "metrics_names"): |
468 | 477 batch_size = estimator.batch_size |
469 else: | 478 score_results = estimator.model_.evaluate( |
479 X_test, y=y_test, batch_size=batch_size, verbose=0 | |
480 ) | |
481 metrics_names = estimator.model_.metrics_names | |
482 if not isinstance(metrics_names, list): | |
483 scores[metrics_names] = score_results | |
484 else: | |
485 scores = dict(zip(metrics_names, score_results)) | |
486 | |
470 if hasattr(estimator, "predict_proba"): | 487 if hasattr(estimator, "predict_proba"): |
471 predictions = estimator.predict_proba(X_test) | 488 predictions = estimator.predict_proba(X_test) |
472 else: | 489 else: |
473 predictions = estimator.predict(X_test) | 490 predictions = estimator.predict(X_test) |
474 | 491 |
475 y_true = y_test | 492 y_true = y_test |
476 scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) | 493 sk_scores = _score(estimator, X_test, y_test, scorer) |
494 scores.update(sk_scores) | |
495 | |
496 # handle output | |
477 if outfile_y_true: | 497 if outfile_y_true: |
478 try: | 498 try: |
479 pd.DataFrame(y_true).to_csv(outfile_y_true, sep="\t", index=False) | 499 pd.DataFrame(y_true).to_csv(outfile_y_true, sep="\t", index=False) |
480 pd.DataFrame(predictions).astype(np.float32).to_csv( | 500 pd.DataFrame(predictions).astype(np.float32).to_csv( |
481 outfile_y_preds, | 501 outfile_y_preds, |
484 float_format="%g", | 504 float_format="%g", |
485 chunksize=10000, | 505 chunksize=10000, |
486 ) | 506 ) |
487 except Exception as e: | 507 except Exception as e: |
488 print("Error in saving predictions: %s" % e) | 508 print("Error in saving predictions: %s" % e) |
489 | |
490 # handle output | 509 # handle output |
491 for name, score in scores.items(): | 510 for name, score in scores.items(): |
492 scores[name] = [score] | 511 scores[name] = [score] |
493 df = pd.DataFrame(scores) | 512 df = pd.DataFrame(scores) |
494 df = df[sorted(df.columns)] | 513 df = df[sorted(df.columns)] |
495 df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) | 514 df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) |
496 | 515 |
497 memory.clear(warn=False) | 516 memory.clear(warn=False) |
498 | 517 |
499 if outfile_object: | 518 if outfile_object: |
500 main_est = estimator | 519 dump_model_to_h5(estimator, outfile_object) |
501 if isinstance(estimator, Pipeline): | |
502 main_est = estimator.steps[-1][-1] | |
503 | |
504 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): | |
505 if outfile_weights: | |
506 main_est.save_weights(outfile_weights) | |
507 del main_est.model_ | |
508 del main_est.fit_params | |
509 del main_est.model_class_ | |
510 if getattr(main_est, "validation_data", None): | |
511 del main_est.validation_data | |
512 if getattr(main_est, "data_generator_", None): | |
513 del main_est.data_generator_ | |
514 | |
515 with open(outfile_object, "wb") as output_handler: | |
516 pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL) | |
517 | 520 |
518 | 521 |
519 if __name__ == "__main__": | 522 if __name__ == "__main__": |
520 aparser = argparse.ArgumentParser() | 523 aparser = argparse.ArgumentParser() |
521 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 524 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |
522 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | 525 aparser.add_argument("-e", "--estimator", dest="infile_estimator") |
523 aparser.add_argument("-X", "--infile1", dest="infile1") | 526 aparser.add_argument("-X", "--infile1", dest="infile1") |
524 aparser.add_argument("-y", "--infile2", dest="infile2") | 527 aparser.add_argument("-y", "--infile2", dest="infile2") |
525 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | 528 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") |
526 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | 529 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") |
527 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
528 aparser.add_argument("-l", "--outfile_y_true", dest="outfile_y_true") | 530 aparser.add_argument("-l", "--outfile_y_true", dest="outfile_y_true") |
529 aparser.add_argument("-p", "--outfile_y_preds", dest="outfile_y_preds") | 531 aparser.add_argument("-p", "--outfile_y_preds", dest="outfile_y_preds") |
530 aparser.add_argument("-g", "--groups", dest="groups") | 532 aparser.add_argument("-g", "--groups", dest="groups") |
531 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | 533 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") |
532 aparser.add_argument("-b", "--intervals", dest="intervals") | 534 aparser.add_argument("-b", "--intervals", dest="intervals") |
539 args.infile_estimator, | 541 args.infile_estimator, |
540 args.infile1, | 542 args.infile1, |
541 args.infile2, | 543 args.infile2, |
542 args.outfile_result, | 544 args.outfile_result, |
543 outfile_object=args.outfile_object, | 545 outfile_object=args.outfile_object, |
544 outfile_weights=args.outfile_weights, | |
545 outfile_y_true=args.outfile_y_true, | 546 outfile_y_true=args.outfile_y_true, |
546 outfile_y_preds=args.outfile_y_preds, | 547 outfile_y_preds=args.outfile_y_preds, |
547 groups=args.groups, | 548 groups=args.groups, |
548 ref_seq=args.ref_seq, | 549 ref_seq=args.ref_seq, |
549 intervals=args.intervals, | 550 intervals=args.intervals, |