Mercurial > repos > bgruening > sklearn_numeric_clustering
comparison numeric_clustering.xml @ 0:c7b8fab00c0f draft
planemo upload for repository https://github.com/bgruening/galaxytools/tools/sklearn commit 0e582cf1f3134c777cce3aa57d71b80ed95e6ba9
author | bgruening |
---|---|
date | Fri, 16 Feb 2018 09:17:59 -0500 |
parents | |
children | 40f3318b61c2 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:c7b8fab00c0f |
---|---|
1 <tool id="sklearn_numeric_clustering" name="Numeric Clustering" version="@VERSION@"> | |
2 <description></description> | |
3 <macros> | |
4 <import>main_macros.xml</import> | |
5 </macros> | |
6 <expand macro="python_requirements"/> | |
7 <expand macro="macro_stdio"/> | |
8 <version_command>echo "@VERSION@"</version_command> | |
9 <command><![CDATA[ | |
10 python "$cluster_script" '$inputs' | |
11 ]]> | |
12 </command> | |
13 <configfiles> | |
14 <inputs name="inputs"/> | |
15 <configfile name="cluster_script"> | |
16 <![CDATA[ | |
17 import sys | |
18 import json | |
19 import numpy as np | |
20 import sklearn.cluster | |
21 import pandas | |
22 from sklearn import metrics | |
23 from scipy.io import mmread | |
24 | |
25 input_json_path = sys.argv[1] | |
26 params = json.load(open(input_json_path, "r")) | |
27 | |
28 selected_algorithm = params["input_types"]["algorithm_options"]["selected_algorithm"] | |
29 | |
30 my_class = getattr(sklearn.cluster, selected_algorithm) | |
31 cluster_object = my_class() | |
32 options = params["input_types"]["algorithm_options"]["options"] | |
33 | |
34 cluster_object.set_params(**options) | |
35 | |
36 #if $input_types.selected_input_type == "sparse": | |
37 data_matrix = mmread(open("$infile", 'r')) | |
38 #else: | |
39 data = pandas.read_csv("$infile", sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) | |
40 | |
41 start_column = $input_types.start_column | |
42 end_column = $input_types.end_column | |
43 | |
44 if end_column and start_column: | |
45 if end_column >= start_column: | |
46 data_matrix = data.values[:, start_column-1:end_column] | |
47 else: | |
48 data_matrix = data.values | |
49 else: | |
50 data_matrix = data.values | |
51 #end if | |
52 | |
53 prediction = cluster_object.fit_predict( data_matrix ) | |
54 | |
55 if len(np.unique(prediction)) > 1: | |
56 silhouette_score = metrics.silhouette_score(data_matrix,prediction,metric='euclidean') | |
57 else: | |
58 silhouette_score = -1 | |
59 sys.stdout.write('silhouette score:' + '\t' + str(silhouette_score) + '\n') | |
60 | |
61 prediction_df = pandas.DataFrame(prediction) | |
62 | |
63 #if $input_types.selected_input_type == "sparse": | |
64 res = prediction_df | |
65 #else: | |
66 res = pandas.concat([data, prediction_df], axis=1) | |
67 #end if | |
68 | |
69 res.to_csv(path_or_buf = "$outfile", sep="\t", index=False, header=False) | |
70 ]]> | |
71 </configfile> | |
72 </configfiles> | |
73 <inputs> | |
74 <conditional name="input_types"> | |
75 <param name="selected_input_type" type="select" label="Select the format of input data"> | |
76 <option value="tabular" selected="true">Tabular Format (tabular, txt)</option> | |
77 <option value="sparse">Sparse Vector Representation (mtx)</option> | |
78 </param> | |
79 <when value="sparse"> | |
80 <param name="infile" type="data" format="txt" label="Sparse vector (scipy.sparse.csr_matrix) file:" help="The following clustering algorithms support sparse matrix operations: ''Birch'', ''DBSCAN'', ''KMeans'', ''Mini BatchK Means'', and ''Spectral Clustering''. If your data is in tabular format, please use other clustering algorithms."/> | |
81 <expand macro="clustering_algorithms_options"/> | |
82 </when> | |
83 <when value="tabular"> | |
84 <param name="infile" type="data" format="tabular" label="Data file with numeric values"/> | |
85 <param name="start_column" type="data_column" data_ref="infile" optional="True" label="Select a subset of data. Start column:" /> | |
86 <param name="end_column" type="data_column" data_ref="infile" optional="True" label="End column:" /> | |
87 <!--expand macro="clustering_algorithms_options"--> | |
88 <conditional name="algorithm_options"> | |
89 <param name="selected_algorithm" type="select" label="Clustering Algorithm"> | |
90 <option value="AgglomerativeClustering">Hierarchical Agglomerative Clustering</option> | |
91 <option value="AffinityPropagation">Affinity Propagation</option> | |
92 <option value="SpectralClustering">Spectral Clustering</option> | |
93 <option value="MiniBatchKMeans">Mini Batch KMeans</option> | |
94 <option value="MeanShift">MeanShift</option> | |
95 <option value="KMeans">KMeans</option> | |
96 <option value="DBSCAN">DBSCAN</option> | |
97 <option value="Birch">Birch</option> | |
98 </param> | |
99 <when value="KMeans"> | |
100 <expand macro="kmeans_advanced_options"/> | |
101 </when> | |
102 <when value="DBSCAN"> | |
103 <expand macro="dbscan_advanced_options"/> | |
104 </when> | |
105 <when value="Birch"> | |
106 <expand macro="birch_advanced_options"/> | |
107 </when> | |
108 <when value="SpectralClustering"> | |
109 <expand macro="spectral_clustering_advanced_options"/> | |
110 </when> | |
111 <when value="MiniBatchKMeans"> | |
112 <expand macro="minibatch_kmeans_advanced_options"/> | |
113 </when> | |
114 <when value="AffinityPropagation"> | |
115 <section name="options" title="Advanced Options" expanded="False"> | |
116 <param argument="damping" type="float" optional="true" value="0.5" label="Damping factor" help="Damping factor between 0.5 and 1."/> | |
117 <expand macro="max_iter" default_value="200"/> | |
118 <param argument="convergence_iter" type="integer" optional="true" value="15" label="Number of iterations at each convergence step" help="Number of iterations with no change in the number of estimated clusters that stops the convergence."/> | |
119 <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Copy" help="If False, the affinity matrix is modified inplace by the algorithm, for memory efficiency."/> | |
120 <!--param argument="preference"/--> | |
121 <param argument="affinity" type="select" label="Affinity" help="Affinity to use; euclidean uses the negative squared euclidean distance between points."> | |
122 <option value="euclidean">Euclidean</option> | |
123 <option value="precomputed">precomputed</option> | |
124 </param> | |
125 </section> | |
126 </when> | |
127 <when value="MeanShift"> | |
128 <section name="options" title="Advanced Options" expanded="False"> | |
129 <param argument="bandwidth" type="float" optional="true" value="" label="Kernel bandwidth" help="Bandwidth used in the RBF kernel. If not given, it will be computed using a heuristic based on the median of all pairwise distances."/> | |
130 <!--param argument="seeds"/--> | |
131 <param argument="bin_seeding" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Discretize initial kernel locations" help="If true, initial kernel locations are the bins grid whose coarseness corresponds to the bandwidth, speeding up the algorithm."/> | |
132 <param argument="min_bin_freq" type="integer" optional="true" value="1" label="Minimum number of seeds per bin" help="To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds."/> | |
133 <param argument="cluster_all" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Cluster all" help="If true, all points (including orphans) are clustered. If false, orphans are given cluster label -1."/> | |
134 </section> | |
135 </when> | |
136 <when value="AgglomerativeClustering"> | |
137 <section name="options" title="Advanced Options" expanded="False"> | |
138 <expand macro="n_clusters" default_value="2" /> | |
139 <param argument="affinity" type="select" label="Affinity" help="Metric used to compute the linkage. If linkage is ''ward'', only ''euclidean'' is accepted."> | |
140 <option value="euclidean">Euclidean</option> | |
141 <option value="manhattan">Manhattan</option> | |
142 <option value="l1">L1</option> | |
143 <option value="l2">L2</option> | |
144 <option value="cosine">cosine</option> | |
145 <option value="precomputed">precomputed</option> | |
146 </param> | |
147 <!--param argument="memory"--> | |
148 <!--param argument="connectivity"--> | |
149 <!--param argument="n_components"/--> | |
150 <!--param argument="compute_full_tree"--> | |
151 <param argument="linkage" type="select" optional="true" label="Linkage" help=""> | |
152 <option value="ward" selected="true">ward</option> | |
153 <option value="complete">complete</option> | |
154 <option value="average">average</option> | |
155 </param> | |
156 <!--param argument="pooling_func"--> | |
157 </section> | |
158 </when> | |
159 </conditional> | |
160 </when> | |
161 </conditional> | |
162 </inputs> | |
163 <outputs> | |
164 <data format="tabular" name="outfile"/> | |
165 </outputs> | |
166 <tests> | |
167 <test> | |
168 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
169 <param name="selected_input_type" value="tabular"/> | |
170 <param name="selected_algorithm" value="KMeans"/> | |
171 <param name="start_column" value="2" /> | |
172 <param name="end_column" value="4" /> | |
173 <param name="n_clusters" value="4" /> | |
174 <param name="init" value="k-means++" /> | |
175 <param name="random_state" value="100"/> | |
176 <output name="outfile" file="cluster_result01.txt"/> | |
177 </test> | |
178 <test> | |
179 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
180 <param name="selected_algorithm" value="KMeans"/> | |
181 <param name="selected_input_type" value="tabular"/> | |
182 <param name="start_column" value="2" /> | |
183 <param name="end_column" value="4" /> | |
184 <param name="n_clusters" value="4" /> | |
185 <param name="init" value="random" /> | |
186 <param name="random_state" value="100"/> | |
187 <output name="outfile" file="cluster_result02.txt"/> | |
188 </test> | |
189 <test> | |
190 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
191 <param name="selected_algorithm" value="DBSCAN"/> | |
192 <param name="selected_input_type" value="tabular"/> | |
193 <param name="start_column" value="2" /> | |
194 <param name="end_column" value="4" /> | |
195 <param name="algorithm" value="kd_tree"/> | |
196 <param name="leaf_size" value="10"/> | |
197 <param name="eps" value="1.0"/> | |
198 <output name="outfile" file="cluster_result03.txt"/> | |
199 </test> | |
200 <test> | |
201 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
202 <param name="selected_algorithm" value="Birch"/> | |
203 <param name="selected_input_type" value="tabular"/> | |
204 <param name="start_column" value="2" /> | |
205 <param name="end_column" value="4" /> | |
206 <param name="n_clusters" value="4"/> | |
207 <param name="threshold" value="0.008"/> | |
208 <output name="outfile" file="cluster_result04.txt"/> | |
209 </test> | |
210 <test> | |
211 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
212 <param name="selected_algorithm" value="Birch"/> | |
213 <param name="selected_input_type" value="tabular"/> | |
214 <param name="start_column" value="2" /> | |
215 <param name="end_column" value="4" /> | |
216 <param name="branching_factor" value="20"/> | |
217 <output name="outfile" file="cluster_result05.txt"/> | |
218 </test> | |
219 <test> | |
220 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
221 <param name="selected_algorithm" value="AffinityPropagation"/> | |
222 <param name="selected_input_type" value="tabular"/> | |
223 <param name="start_column" value="2" /> | |
224 <param name="end_column" value="4" /> | |
225 <param name="affinity" value="euclidean"/> | |
226 <param name="copy" value="false"/> | |
227 <output name="outfile" file="cluster_result06.txt"/> | |
228 </test> | |
229 <test> | |
230 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
231 <param name="selected_algorithm" value="AffinityPropagation"/> | |
232 <param name="selected_input_type" value="tabular"/> | |
233 <param name="start_column" value="2" /> | |
234 <param name="end_column" value="4" /> | |
235 <param name="damping" value="0.8"/> | |
236 <output name="outfile" file="cluster_result07.txt"/> | |
237 </test> | |
238 <test> | |
239 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
240 <param name="selected_algorithm" value="MeanShift"/> | |
241 <param name="selected_input_type" value="tabular"/> | |
242 <param name="start_column" value="2" /> | |
243 <param name="end_column" value="4" /> | |
244 <param name="min_bin_freq" value="3"/> | |
245 <output name="outfile" file="cluster_result08.txt"/> | |
246 </test> | |
247 <test> | |
248 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
249 <param name="selected_algorithm" value="MeanShift"/> | |
250 <param name="selected_input_type" value="tabular"/> | |
251 <param name="start_column" value="2" /> | |
252 <param name="end_column" value="4" /> | |
253 <param name="cluster_all" value="False"/> | |
254 <output name="outfile" file="cluster_result09.txt"/> | |
255 </test> | |
256 <test> | |
257 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
258 <param name="selected_algorithm" value="AgglomerativeClustering"/> | |
259 <param name="selected_input_type" value="tabular"/> | |
260 <param name="start_column" value="2" /> | |
261 <param name="end_column" value="4" /> | |
262 <param name="affinity" value="euclidean"/> | |
263 <param name="linkage" value="average"/> | |
264 <param name="n_clusters" value="4"/> | |
265 <output name="outfile" file="cluster_result10.txt"/> | |
266 </test> | |
267 <test> | |
268 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
269 <param name="selected_algorithm" value="AgglomerativeClustering"/> | |
270 <param name="selected_input_type" value="tabular"/> | |
271 <param name="start_column" value="2" /> | |
272 <param name="end_column" value="4" /> | |
273 <param name="linkage" value="complete"/> | |
274 <param name="n_clusters" value="4"/> | |
275 <output name="outfile" file="cluster_result11.txt"/> | |
276 </test> | |
277 <test> | |
278 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
279 <param name="selected_algorithm" value="SpectralClustering"/> | |
280 <param name="selected_input_type" value="tabular"/> | |
281 <param name="start_column" value="2" /> | |
282 <param name="end_column" value="4" /> | |
283 <param name="eigen_solver" value="arpack"/> | |
284 <param name="n_neighbors" value="12"/> | |
285 <param name="n_clusters" value="4"/> | |
286 <param name="assign_labels" value="discretize"/> | |
287 <param name="random_state" value="100"/> | |
288 <output name="outfile" file="cluster_result12" compare="sim_size" /> | |
289 </test> | |
290 <test> | |
291 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
292 <param name="selected_algorithm" value="SpectralClustering"/> | |
293 <param name="selected_input_type" value="tabular"/> | |
294 <param name="start_column" value="2" /> | |
295 <param name="end_column" value="4" /> | |
296 <param name="assign_labels" value="discretize"/> | |
297 <param name="random_state" value="100"/> | |
298 <param name="degree" value="2"/> | |
299 <output name="outfile" file="cluster_result13.txt" compare="sim_size" /> | |
300 </test> | |
301 <test> | |
302 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
303 <param name="selected_algorithm" value="MiniBatchKMeans"/> | |
304 <param name="selected_input_type" value="tabular"/> | |
305 <param name="start_column" value="2" /> | |
306 <param name="end_column" value="4" /> | |
307 <param name="tol" value="0.5"/> | |
308 <param name="random_state" value="100"/> | |
309 <output name="outfile" file="cluster_result14.txt"/> | |
310 </test> | |
311 <test> | |
312 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
313 <param name="selected_algorithm" value="MiniBatchKMeans"/> | |
314 <param name="selected_input_type" value="tabular"/> | |
315 <param name="n_init" value="5"/> | |
316 <param name="start_column" value="2" /> | |
317 <param name="end_column" value="4" /> | |
318 <param name="batch_size" value="10"/> | |
319 <param name="n_clusters" value="4"/> | |
320 <param name="random_state" value="100"/> | |
321 <param name="reassignment_ratio" value="1.0"/> | |
322 <output name="outfile" file="cluster_result15.txt"/> | |
323 </test> | |
324 <test> | |
325 <param name="infile" value="numeric_values.tabular" ftype="tabular"/> | |
326 <param name="selected_algorithm" value="KMeans"/> | |
327 <param name="selected_input_type" value="tabular"/> | |
328 <param name="start_column" value="1" /> | |
329 <param name="end_column" value="1" /> | |
330 <param name="n_clusters" value="4" /> | |
331 <param name="random_state" value="100"/> | |
332 <output name="outfile" file="cluster_result16.txt"/> | |
333 </test> | |
334 <test> | |
335 <param name="infile" value="sparse.mtx" ftype="txt"/> | |
336 <param name="selected_input_type" value="sparse"/> | |
337 <param name="selected_algorithm" value="KMeans"/> | |
338 <param name="n_clusters" value="2" /> | |
339 <param name="init" value="k-means++" /> | |
340 <param name="random_state" value="100"/> | |
341 <output name="outfile" file="cluster_result17.txt"/> | |
342 </test> | |
343 <test> | |
344 <param name="infile" value="sparse.mtx" ftype="txt"/> | |
345 <param name="selected_algorithm" value="DBSCAN"/> | |
346 <param name="selected_input_type" value="sparse"/> | |
347 <param name="algorithm" value="kd_tree"/> | |
348 <param name="leaf_size" value="10"/> | |
349 <param name="eps" value="1.0"/> | |
350 <output name="outfile" file="cluster_result18.txt"/> | |
351 </test> | |
352 <test> | |
353 <param name="infile" value="sparse.mtx" ftype="txt"/> | |
354 <param name="selected_algorithm" value="Birch"/> | |
355 <param name="selected_input_type" value="sparse"/> | |
356 <param name="n_clusters" value="2"/> | |
357 <param name="threshold" value="0.008"/> | |
358 <output name="outfile" file="cluster_result19.txt"/> | |
359 </test> | |
360 <test> | |
361 <param name="infile" value="sparse.mtx" ftype="txt"/> | |
362 <param name="selected_algorithm" value="MiniBatchKMeans"/> | |
363 <param name="selected_input_type" value="sparse"/> | |
364 <param name="n_init" value="5"/> | |
365 <param name="batch_size" value="10"/> | |
366 <param name="n_clusters" value="2"/> | |
367 <param name="random_state" value="100"/> | |
368 <param name="reassignment_ratio" value="1.0"/> | |
369 <output name="outfile" file="cluster_result20.txt"/> | |
370 </test> | |
371 <test> | |
372 <param name="infile" value="sparse.mtx" ftype="txt"/> | |
373 <param name="selected_algorithm" value="SpectralClustering"/> | |
374 <param name="selected_input_type" value="sparse"/> | |
375 <param name="assign_labels" value="discretize"/> | |
376 <param name="n_clusters" value="2"/> | |
377 <param name="random_state" value="100"/> | |
378 <param name="degree" value="2"/> | |
379 <output name="outfile" file="cluster_result21.txt"/> | |
380 </test> | |
381 </tests> | |
382 <help><![CDATA[ | |
383 **What it does** | |
384 This tool offers different clustering algorithms which are provided by | |
385 scikit-learn to find similarities among samples and cluster the samples based on these similarities. | |
386 ]]></help> | |
387 <expand macro="sklearn_citation"/> | |
388 </tool> |