Mercurial > repos > bgruening > sklearn_pairwise_metrics
comparison test-data/get_params05.tabular @ 31:bc17040617c0 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
author | bgruening |
---|---|
date | Mon, 16 Dec 2019 05:38:12 -0500 |
parents | 86020dbc8ef7 |
children |
comparison
equal
deleted
inserted
replaced
30:96452e7461f4 | 31:bc17040617c0 |
---|---|
1 Parameter Value | 1 Parameter Value |
2 * memory memory: None | 2 @ bootstrap bootstrap: True |
3 * steps "steps: [('randomforestregressor', RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None, | 3 @ criterion criterion: 'mse' |
4 max_features='auto', max_leaf_nodes=None, | 4 @ max_depth max_depth: None |
5 min_impurity_decrease=0.0, min_impurity_split=None, | 5 @ max_features max_features: 'auto' |
6 min_samples_leaf=1, min_samples_split=2, | 6 @ max_leaf_nodes max_leaf_nodes: None |
7 min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, | 7 @ min_impurity_decrease min_impurity_decrease: 0.0 |
8 oob_score=False, random_state=42, verbose=0, warm_start=False))]" | 8 @ min_impurity_split min_impurity_split: None |
9 @ randomforestregressor "randomforestregressor: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None, | 9 @ min_samples_leaf min_samples_leaf: 1 |
10 max_features='auto', max_leaf_nodes=None, | 10 @ min_samples_split min_samples_split: 2 |
11 min_impurity_decrease=0.0, min_impurity_split=None, | 11 @ min_weight_fraction_leaf min_weight_fraction_leaf: 0.0 |
12 min_samples_leaf=1, min_samples_split=2, | 12 @ n_estimators n_estimators: 100 |
13 min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, | 13 * n_jobs n_jobs: 1 |
14 oob_score=False, random_state=42, verbose=0, warm_start=False)" | 14 @ oob_score oob_score: False |
15 @ randomforestregressor__bootstrap randomforestregressor__bootstrap: True | 15 @ random_state random_state: 42 |
16 @ randomforestregressor__criterion randomforestregressor__criterion: 'mse' | 16 * verbose verbose: 0 |
17 @ randomforestregressor__max_depth randomforestregressor__max_depth: None | 17 @ warm_start warm_start: False |
18 @ randomforestregressor__max_features randomforestregressor__max_features: 'auto' | 18 Note: @, params eligible for search in searchcv tool. |
19 @ randomforestregressor__max_leaf_nodes randomforestregressor__max_leaf_nodes: None | |
20 @ randomforestregressor__min_impurity_decrease randomforestregressor__min_impurity_decrease: 0.0 | |
21 @ randomforestregressor__min_impurity_split randomforestregressor__min_impurity_split: None | |
22 @ randomforestregressor__min_samples_leaf randomforestregressor__min_samples_leaf: 1 | |
23 @ randomforestregressor__min_samples_split randomforestregressor__min_samples_split: 2 | |
24 @ randomforestregressor__min_weight_fraction_leaf randomforestregressor__min_weight_fraction_leaf: 0.0 | |
25 @ randomforestregressor__n_estimators randomforestregressor__n_estimators: 100 | |
26 * randomforestregressor__n_jobs randomforestregressor__n_jobs: 1 | |
27 @ randomforestregressor__oob_score randomforestregressor__oob_score: False | |
28 @ randomforestregressor__random_state randomforestregressor__random_state: 42 | |
29 * randomforestregressor__verbose randomforestregressor__verbose: 0 | |
30 @ randomforestregressor__warm_start randomforestregressor__warm_start: False | |
31 Note: @, searchable params in searchcv too. |