Mercurial > repos > bgruening > sklearn_pairwise_metrics
view keras_deep_learning.py @ 40:b07416ec8d16 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit f031d8ddfb73cec24572648666ac44ee47f08aad
author | bgruening |
---|---|
date | Thu, 11 Aug 2022 09:31:45 +0000 |
parents | 09bfbef3dd90 |
children | 053e7f32d37e |
line wrap: on
line source
import argparse import json import pickle import warnings from ast import literal_eval import keras import pandas as pd import six from galaxy_ml.utils import get_search_params, SafeEval, try_get_attr from keras.models import Model, Sequential safe_eval = SafeEval() def _handle_shape(literal): """ Eval integer or list/tuple of integers from string Parameters: ----------- literal : str. """ literal = literal.strip() if not literal: return None try: return literal_eval(literal) except NameError as e: print(e) return literal def _handle_regularizer(literal): """ Construct regularizer from string literal Parameters ---------- literal : str. E.g. '(0.1, 0)' """ literal = literal.strip() if not literal: return None l1, l2 = literal_eval(literal) if not l1 and not l2: return None if l1 is None: l1 = 0.0 if l2 is None: l2 = 0.0 return keras.regularizers.l1_l2(l1=l1, l2=l2) def _handle_constraint(config): """ Construct constraint from galaxy tool parameters. Suppose correct dictionary format Parameters ---------- config : dict. E.g. "bias_constraint": {"constraint_options": {"max_value":1.0, "min_value":0.0, "axis":"[0, 1, 2]" }, "constraint_type": "MinMaxNorm" } """ constraint_type = config["constraint_type"] if constraint_type in ("None", ""): return None klass = getattr(keras.constraints, constraint_type) options = config.get("constraint_options", {}) if "axis" in options: options["axis"] = literal_eval(options["axis"]) return klass(**options) def _handle_lambda(literal): return None def _handle_layer_parameters(params): """ Access to handle all kinds of parameters """ for key, value in six.iteritems(params): if value in ("None", ""): params[key] = None continue if type(value) in [int, float, bool] or ( type(value) is str and value.isalpha() ): continue if ( key in [ "input_shape", "noise_shape", "shape", "batch_shape", "target_shape", "dims", "kernel_size", "strides", "dilation_rate", "output_padding", "cropping", "size", "padding", "pool_size", "axis", "shared_axes", ] and isinstance(value, str) ): params[key] = _handle_shape(value) elif key.endswith("_regularizer") and isinstance(value, dict): params[key] = _handle_regularizer(value) elif key.endswith("_constraint") and isinstance(value, dict): params[key] = _handle_constraint(value) elif key == "function": # No support for lambda/function eval params.pop(key) return params def get_sequential_model(config): """ Construct keras Sequential model from Galaxy tool parameters Parameters: ----------- config : dictionary, galaxy tool parameters loaded by JSON """ model = Sequential() input_shape = _handle_shape(config["input_shape"]) layers = config["layers"] for layer in layers: options = layer["layer_selection"] layer_type = options.pop("layer_type") klass = getattr(keras.layers, layer_type) kwargs = options.pop("kwargs", "") # parameters needs special care options = _handle_layer_parameters(options) if kwargs: kwargs = safe_eval("dict(" + kwargs + ")") options.update(kwargs) # add input_shape to the first layer only if not getattr(model, "_layers") and input_shape is not None: options["input_shape"] = input_shape model.add(klass(**options)) return model def get_functional_model(config): """ Construct keras functional model from Galaxy tool parameters Parameters ----------- config : dictionary, galaxy tool parameters loaded by JSON """ layers = config["layers"] all_layers = [] for layer in layers: options = layer["layer_selection"] layer_type = options.pop("layer_type") klass = getattr(keras.layers, layer_type) inbound_nodes = options.pop("inbound_nodes", None) kwargs = options.pop("kwargs", "") # parameters needs special care options = _handle_layer_parameters(options) if kwargs: kwargs = safe_eval("dict(" + kwargs + ")") options.update(kwargs) # merge layers if "merging_layers" in options: idxs = literal_eval(options.pop("merging_layers")) merging_layers = [all_layers[i - 1] for i in idxs] new_layer = klass(**options)(merging_layers) # non-input layers elif inbound_nodes is not None: new_layer = klass(**options)(all_layers[inbound_nodes - 1]) # input layers else: new_layer = klass(**options) all_layers.append(new_layer) input_indexes = _handle_shape(config["input_layers"]) input_layers = [all_layers[i - 1] for i in input_indexes] output_indexes = _handle_shape(config["output_layers"]) output_layers = [all_layers[i - 1] for i in output_indexes] return Model(inputs=input_layers, outputs=output_layers) def get_batch_generator(config): """ Construct keras online data generator from Galaxy tool parameters Parameters ----------- config : dictionary, galaxy tool parameters loaded by JSON """ generator_type = config.pop("generator_type") if generator_type == "none": return None klass = try_get_attr("galaxy_ml.preprocessors", generator_type) if generator_type == "GenomicIntervalBatchGenerator": config["ref_genome_path"] = "to_be_determined" config["intervals_path"] = "to_be_determined" config["target_path"] = "to_be_determined" config["features"] = "to_be_determined" else: config["fasta_path"] = "to_be_determined" return klass(**config) def config_keras_model(inputs, outfile): """ config keras model layers and output JSON Parameters ---------- inputs : dict loaded galaxy tool parameters from `keras_model_config` tool. outfile : str Path to galaxy dataset containing keras model JSON. """ model_type = inputs["model_selection"]["model_type"] layers_config = inputs["model_selection"] if model_type == "sequential": model = get_sequential_model(layers_config) else: model = get_functional_model(layers_config) json_string = model.to_json() with open(outfile, "w") as f: json.dump(json.loads(json_string), f, indent=2) def build_keras_model( inputs, outfile, model_json, infile_weights=None, batch_mode=False, outfile_params=None, ): """ for `keras_model_builder` tool Parameters ---------- inputs : dict loaded galaxy tool parameters from `keras_model_builder` tool. outfile : str Path to galaxy dataset containing the keras_galaxy model output. model_json : str Path to dataset containing keras model JSON. infile_weights : str or None If string, path to dataset containing model weights. batch_mode : bool, default=False Whether to build online batch classifier. outfile_params : str, default=None File path to search parameters output. """ with open(model_json, "r") as f: json_model = json.load(f) config = json_model["config"] options = {} if json_model["class_name"] == "Sequential": options["model_type"] = "sequential" klass = Sequential elif json_model["class_name"] == "Model": options["model_type"] = "functional" klass = Model else: raise ValueError("Unknow Keras model class: %s" % json_model["class_name"]) # load prefitted model if inputs["mode_selection"]["mode_type"] == "prefitted": estimator = klass.from_config(config) estimator.load_weights(infile_weights) # build train model else: cls_name = inputs["mode_selection"]["learning_type"] klass = try_get_attr("galaxy_ml.keras_galaxy_models", cls_name) options["loss"] = inputs["mode_selection"]["compile_params"]["loss"] options["optimizer"] = ( inputs["mode_selection"]["compile_params"]["optimizer_selection"][ "optimizer_type" ] ).lower() options.update( ( inputs["mode_selection"]["compile_params"]["optimizer_selection"][ "optimizer_options" ] ) ) train_metrics = inputs["mode_selection"]["compile_params"]["metrics"] if train_metrics[-1] == "none": train_metrics = train_metrics[:-1] options["metrics"] = train_metrics options.update(inputs["mode_selection"]["fit_params"]) options["seed"] = inputs["mode_selection"]["random_seed"] if batch_mode: generator = get_batch_generator( inputs["mode_selection"]["generator_selection"] ) options["data_batch_generator"] = generator options["prediction_steps"] = inputs["mode_selection"]["prediction_steps"] options["class_positive_factor"] = inputs["mode_selection"][ "class_positive_factor" ] estimator = klass(config, **options) if outfile_params: hyper_params = get_search_params(estimator) # TODO: remove this after making `verbose` tunable for h_param in hyper_params: if h_param[1].endswith("verbose"): h_param[0] = "@" df = pd.DataFrame(hyper_params, columns=["", "Parameter", "Value"]) df.to_csv(outfile_params, sep="\t", index=False) print(repr(estimator)) # save model by pickle with open(outfile, "wb") as f: pickle.dump(estimator, f, pickle.HIGHEST_PROTOCOL) if __name__ == "__main__": warnings.simplefilter("ignore") aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-m", "--model_json", dest="model_json") aparser.add_argument("-t", "--tool_id", dest="tool_id") aparser.add_argument("-w", "--infile_weights", dest="infile_weights") aparser.add_argument("-o", "--outfile", dest="outfile") aparser.add_argument("-p", "--outfile_params", dest="outfile_params") args = aparser.parse_args() input_json_path = args.inputs with open(input_json_path, "r") as param_handler: inputs = json.load(param_handler) tool_id = args.tool_id outfile = args.outfile outfile_params = args.outfile_params model_json = args.model_json infile_weights = args.infile_weights # for keras_model_config tool if tool_id == "keras_model_config": config_keras_model(inputs, outfile) # for keras_model_builder tool else: batch_mode = False if tool_id == "keras_batch_models": batch_mode = True build_keras_model( inputs=inputs, model_json=model_json, infile_weights=infile_weights, batch_mode=batch_mode, outfile=outfile, outfile_params=outfile_params, )