Mercurial > repos > bgruening > sklearn_pairwise_metrics
view train_test_eval.py @ 35:dbbe397b64ad draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 17:36:50 +0000 |
parents | bc17040617c0 |
children | cd4328a02798 |
line wrap: on
line source
import argparse import json import os import pickle import warnings from itertools import chain import joblib import numpy as np import pandas as pd from galaxy_ml.model_validations import train_test_split from galaxy_ml.utils import ( get_module, get_scoring, load_model, read_columns, SafeEval, try_get_attr, ) from scipy.io import mmread from sklearn import pipeline from sklearn.metrics.scorer import _check_multimetric_scoring from sklearn.model_selection._validation import _score from sklearn.model_selection import _search, _validation from sklearn.model_selection._validation import _score from sklearn.utils import indexable, safe_indexing _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") setattr(_search, "_fit_and_score", _fit_and_score) setattr(_validation, "_fit_and_score", _fit_and_score) N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) CACHE_DIR = os.path.join(os.getcwd(), "cached") del os NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") ALLOWED_CALLBACKS = ( "EarlyStopping", "TerminateOnNaN", "ReduceLROnPlateau", "CSVLogger", "None", ) def _eval_swap_params(params_builder): swap_params = {} for p in params_builder["param_set"]: swap_value = p["sp_value"].strip() if swap_value == "": continue param_name = p["sp_name"] if param_name.lower().endswith(NON_SEARCHABLE): warnings.warn( "Warning: `%s` is not eligible for search and was " "omitted!" % param_name ) continue if not swap_value.startswith(":"): safe_eval = SafeEval(load_scipy=True, load_numpy=True) ev = safe_eval(swap_value) else: # Have `:` before search list, asks for estimator evaluatio safe_eval_es = SafeEval(load_estimators=True) swap_value = swap_value[1:].strip() # TODO maybe add regular express check ev = safe_eval_es(swap_value) swap_params[param_name] = ev return swap_params def train_test_split_none(*arrays, **kwargs): """extend train_test_split to take None arrays and support split by group names. """ nones = [] new_arrays = [] for idx, arr in enumerate(arrays): if arr is None: nones.append(idx) else: new_arrays.append(arr) if kwargs["shuffle"] == "None": kwargs["shuffle"] = None group_names = kwargs.pop("group_names", None) if group_names is not None and group_names.strip(): group_names = [name.strip() for name in group_names.split(",")] new_arrays = indexable(*new_arrays) groups = kwargs["labels"] n_samples = new_arrays[0].shape[0] index_arr = np.arange(n_samples) test = index_arr[np.isin(groups, group_names)] train = index_arr[~np.isin(groups, group_names)] rval = list( chain.from_iterable( (safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays ) ) else: rval = train_test_split(*new_arrays, **kwargs) for pos in nones: rval[pos * 2: 2] = [None, None] return rval def main( inputs, infile_estimator, infile1, infile2, outfile_result, outfile_object=None, outfile_weights=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None, ): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_estimator : str File path to estimator infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values outfile_result : str File path to save the results, either cv_results or test result outfile_object : str, optional File path to save searchCV object outfile_weights : str, optional File path to save deep learning model weights groups : str File path to dataset containing groups labels ref_seq : str File path to dataset containing genome sequence file intervals : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file """ warnings.simplefilter("ignore") with open(inputs, "r") as param_handler: params = json.load(param_handler) # load estimator with open(infile_estimator, "rb") as estimator_handler: estimator = load_model(estimator_handler) # swap hyperparameter swapping = params["experiment_schemes"]["hyperparams_swapping"] swap_params = _eval_swap_params(swapping) estimator.set_params(**swap_params) estimator_params = estimator.get_params() # store read dataframe object loaded_df = {} input_type = params["input_options"]["selected_input"] # tabular input if input_type == "tabular": header = "infer" if params["input_options"]["header1"] else None column_option = params["input_options"]["column_selector_options_1"][ "selected_column_selector_option" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = params["input_options"]["column_selector_options_1"]["col1"] else: c = None df_key = infile1 + repr(header) df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = df X = read_columns(df, c=c, c_option=column_option).astype(float) # sparse input elif input_type == "sparse": X = mmread(open(infile1, "r")) # fasta_file input elif input_type == "seq_fasta": pyfaidx = get_module("pyfaidx") sequences = pyfaidx.Fasta(fasta_path) n_seqs = len(sequences.keys()) X = np.arange(n_seqs)[:, np.newaxis] for param in estimator_params.keys(): if param.endswith("fasta_path"): estimator.set_params(**{param: fasta_path}) break else: raise ValueError( "The selected estimator doesn't support " "fasta file input! Please consider using " "KerasGBatchClassifier with " "FastaDNABatchGenerator/FastaProteinBatchGenerator " "or having GenomeOneHotEncoder/ProteinOneHotEncoder " "in pipeline!" ) elif input_type == "refseq_and_interval": path_params = { "data_batch_generator__ref_genome_path": ref_seq, "data_batch_generator__intervals_path": intervals, "data_batch_generator__target_path": targets, } estimator.set_params(**path_params) n_intervals = sum(1 for line in open(intervals)) X = np.arange(n_intervals)[:, np.newaxis] # Get target y header = "infer" if params["input_options"]["header2"] else None column_option = params["input_options"]["column_selector_options_2"][ "selected_column_selector_option2" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = params["input_options"]["column_selector_options_2"]["col2"] else: c = None df_key = infile2 + repr(header) if df_key in loaded_df: infile2 = loaded_df[df_key] else: infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = infile2 y = read_columns(infile2, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() if input_type == "refseq_and_interval": estimator.set_params(data_batch_generator__features=y.ravel().tolist()) y = None # end y # load groups if groups: groups_selector = ( params["experiment_schemes"]["test_split"]["split_algos"] ).pop("groups_selector") header = "infer" if groups_selector["header_g"] else None column_option = groups_selector["column_selector_options_g"][ "selected_column_selector_option_g" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = groups_selector["column_selector_options_g"]["col_g"] else: c = None df_key = groups + repr(header) if df_key in loaded_df: groups = loaded_df[df_key] groups = read_columns(groups, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) groups = groups.ravel() # del loaded_df del loaded_df # handle memory memory = joblib.Memory(location=CACHE_DIR, verbose=0) # cache iraps_core fits could increase search speed significantly if estimator.__class__.__name__ == "IRAPSClassifier": estimator.set_params(memory=memory) else: # For iraps buried in pipeline new_params = {} for p, v in estimator_params.items(): if p.endswith("memory"): # for case of `__irapsclassifier__memory` if len(p) > 8 and p[:-8].endswith("irapsclassifier"): # cache iraps_core fits could increase search # speed significantly new_params[p] = memory # security reason, we don't want memory being # modified unexpectedly elif v: new_params[p] = None # handle n_jobs elif p.endswith("n_jobs"): # For now, 1 CPU is suggested for iprasclassifier if len(p) > 8 and p[:-8].endswith("irapsclassifier"): new_params[p] = 1 else: new_params[p] = N_JOBS # for security reason, types of callback are limited elif p.endswith("callbacks"): for cb in v: cb_type = cb["callback_selection"]["callback_type"] if cb_type not in ALLOWED_CALLBACKS: raise ValueError("Prohibited callback type: %s!" % cb_type) estimator.set_params(**new_params) # handle scorer, convert to scorer dict # Check if scoring is specified scoring = params["experiment_schemes"]["metrics"].get("scoring", None) if scoring is not None: # get_scoring() expects secondary_scoring to be a comma separated string (not a list) # Check if secondary_scoring is specified secondary_scoring = scoring.get("secondary_scoring", None) if secondary_scoring is not None: # If secondary_scoring is specified, convert the list into comman separated string scoring["secondary_scoring"] = ",".join(scoring["secondary_scoring"]) scorer = get_scoring(scoring) scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) # handle test (first) split test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] if test_split_options["shuffle"] == "group": test_split_options["labels"] = groups if test_split_options["shuffle"] == "stratified": if y is not None: test_split_options["labels"] = y else: raise ValueError( "Stratified shuffle split is not " "applicable on empty target values!" ) X_train, X_test, y_train, y_test, groups_train, _groups_test = train_test_split_none( X, y, groups, **test_split_options ) exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] # handle validation (second) split if exp_scheme == "train_val_test": val_split_options = params["experiment_schemes"]["val_split"]["split_algos"] if val_split_options["shuffle"] == "group": val_split_options["labels"] = groups_train if val_split_options["shuffle"] == "stratified": if y_train is not None: val_split_options["labels"] = y_train else: raise ValueError( "Stratified shuffle split is not " "applicable on empty target values!" ) ( X_train, X_val, y_train, y_val, groups_train, _groups_val, ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) # train and eval if hasattr(estimator, "validation_data"): if exp_scheme == "train_val_test": estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) else: estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) else: estimator.fit(X_train, y_train) if hasattr(estimator, "evaluate"): scores = estimator.evaluate( X_test, y_test=y_test, scorer=scorer, is_multimetric=True ) else: scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) # handle output for name, score in scores.items(): scores[name] = [score] df = pd.DataFrame(scores) df = df[sorted(df.columns)] df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) memory.clear(warn=False) if outfile_object: main_est = estimator if isinstance(estimator, pipeline.Pipeline): main_est = estimator.steps[-1][-1] if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): if outfile_weights: main_est.save_weights(outfile_weights) if getattr(main_est, "model_", None): del main_est.model_ if getattr(main_est, "fit_params", None): del main_est.fit_params if getattr(main_est, "model_class_", None): del main_est.model_class_ if getattr(main_est, "validation_data", None): del main_est.validation_data if getattr(main_est, "data_generator_", None): del main_est.data_generator_ with open(outfile_object, "wb") as output_handler: pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL) if __name__ == "__main__": aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-e", "--estimator", dest="infile_estimator") aparser.add_argument("-X", "--infile1", dest="infile1") aparser.add_argument("-y", "--infile2", dest="infile2") aparser.add_argument("-O", "--outfile_result", dest="outfile_result") aparser.add_argument("-o", "--outfile_object", dest="outfile_object") aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") aparser.add_argument("-g", "--groups", dest="groups") aparser.add_argument("-r", "--ref_seq", dest="ref_seq") aparser.add_argument("-b", "--intervals", dest="intervals") aparser.add_argument("-t", "--targets", dest="targets") aparser.add_argument("-f", "--fasta_path", dest="fasta_path") args = aparser.parse_args() main( args.inputs, args.infile_estimator, args.infile1, args.infile2, args.outfile_result, outfile_object=args.outfile_object, outfile_weights=args.outfile_weights, groups=args.groups, ref_seq=args.ref_seq, intervals=args.intervals, targets=args.targets, fasta_path=args.fasta_path, )