Mercurial > repos > bgruening > sklearn_pca
comparison simple_model_fit.py @ 3:24c1cc2dd4a4 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 01:14:08 +0000 |
parents | e36ab18cbaca |
children | c16818ce0424 |
comparison
equal
deleted
inserted
replaced
2:e36ab18cbaca | 3:24c1cc2dd4a4 |
---|---|
4 | 4 |
5 import pandas as pd | 5 import pandas as pd |
6 from galaxy_ml.utils import load_model, read_columns | 6 from galaxy_ml.utils import load_model, read_columns |
7 from scipy.io import mmread | 7 from scipy.io import mmread |
8 from sklearn.pipeline import Pipeline | 8 from sklearn.pipeline import Pipeline |
9 | |
10 | 9 |
11 N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) | 10 N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) |
12 | 11 |
13 | 12 |
14 # TODO import from galaxy_ml.utils in future versions | 13 # TODO import from galaxy_ml.utils in future versions |
34 for name, p in estimator_params.items(): | 33 for name, p in estimator_params.items(): |
35 # all potential unauthorized file write | 34 # all potential unauthorized file write |
36 if name == "memory" or name.endswith("__memory") or name.endswith("_path"): | 35 if name == "memory" or name.endswith("__memory") or name.endswith("_path"): |
37 new_p = {name: None} | 36 new_p = {name: None} |
38 estimator.set_params(**new_p) | 37 estimator.set_params(**new_p) |
39 elif n_jobs is not None and (name == 'n_jobs' or name.endswith('__n_jobs')): | 38 elif n_jobs is not None and (name == "n_jobs" or name.endswith("__n_jobs")): |
40 new_p = {name: n_jobs} | 39 new_p = {name: n_jobs} |
41 estimator.set_params(**new_p) | 40 estimator.set_params(**new_p) |
42 elif name.endswith("callbacks"): | 41 elif name.endswith("callbacks"): |
43 for cb in p: | 42 for cb in p: |
44 cb_type = cb["callback_selection"]["callback_type"] | 43 cb_type = cb["callback_selection"]["callback_type"] |
66 | 65 |
67 input_type = params["input_options"]["selected_input"] | 66 input_type = params["input_options"]["selected_input"] |
68 # tabular input | 67 # tabular input |
69 if input_type == "tabular": | 68 if input_type == "tabular": |
70 header = "infer" if params["input_options"]["header1"] else None | 69 header = "infer" if params["input_options"]["header1"] else None |
71 column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] | 70 column_option = params["input_options"]["column_selector_options_1"][ |
71 "selected_column_selector_option" | |
72 ] | |
72 if column_option in [ | 73 if column_option in [ |
73 "by_index_number", | 74 "by_index_number", |
74 "all_but_by_index_number", | 75 "all_but_by_index_number", |
75 "by_header_name", | 76 "by_header_name", |
76 "all_but_by_header_name", | 77 "all_but_by_header_name", |
88 elif input_type == "sparse": | 89 elif input_type == "sparse": |
89 X = mmread(open(infile1, "r")) | 90 X = mmread(open(infile1, "r")) |
90 | 91 |
91 # Get target y | 92 # Get target y |
92 header = "infer" if params["input_options"]["header2"] else None | 93 header = "infer" if params["input_options"]["header2"] else None |
93 column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] | 94 column_option = params["input_options"]["column_selector_options_2"][ |
95 "selected_column_selector_option2" | |
96 ] | |
94 if column_option in [ | 97 if column_option in [ |
95 "by_index_number", | 98 "by_index_number", |
96 "all_but_by_index_number", | 99 "all_but_by_index_number", |
97 "by_header_name", | 100 "by_header_name", |
98 "all_but_by_header_name", | 101 "all_but_by_header_name", |
106 infile2 = loaded_df[df_key] | 109 infile2 = loaded_df[df_key] |
107 else: | 110 else: |
108 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | 111 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) |
109 loaded_df[df_key] = infile2 | 112 loaded_df[df_key] = infile2 |
110 | 113 |
111 y = read_columns(infile2, | 114 y = read_columns( |
112 c=c, | 115 infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True |
113 c_option=column_option, | 116 ) |
114 sep='\t', | |
115 header=header, | |
116 parse_dates=True) | |
117 if len(y.shape) == 2 and y.shape[1] == 1: | 117 if len(y.shape) == 2 and y.shape[1] == 1: |
118 y = y.ravel() | 118 y = y.ravel() |
119 | 119 |
120 return X, y | 120 return X, y |
121 | 121 |