Mercurial > repos > bgruening > sklearn_pca
comparison ml_visualization_ex.py @ 0:2d7016b3ae92 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 2afb24f3c81d625312186750a714d702363012b5"
| author | bgruening |
|---|---|
| date | Fri, 02 Oct 2020 08:45:21 +0000 |
| parents | |
| children | 132805688fa3 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:2d7016b3ae92 |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import matplotlib | |
| 4 import matplotlib.pyplot as plt | |
| 5 import numpy as np | |
| 6 import os | |
| 7 import pandas as pd | |
| 8 import plotly | |
| 9 import plotly.graph_objs as go | |
| 10 import warnings | |
| 11 | |
| 12 from keras.models import model_from_json | |
| 13 from keras.utils import plot_model | |
| 14 from sklearn.feature_selection.base import SelectorMixin | |
| 15 from sklearn.metrics import precision_recall_curve, average_precision_score | |
| 16 from sklearn.metrics import roc_curve, auc, confusion_matrix | |
| 17 from sklearn.pipeline import Pipeline | |
| 18 from galaxy_ml.utils import load_model, read_columns, SafeEval | |
| 19 | |
| 20 | |
| 21 safe_eval = SafeEval() | |
| 22 | |
| 23 # plotly default colors | |
| 24 default_colors = [ | |
| 25 '#1f77b4', # muted blue | |
| 26 '#ff7f0e', # safety orange | |
| 27 '#2ca02c', # cooked asparagus green | |
| 28 '#d62728', # brick red | |
| 29 '#9467bd', # muted purple | |
| 30 '#8c564b', # chestnut brown | |
| 31 '#e377c2', # raspberry yogurt pink | |
| 32 '#7f7f7f', # middle gray | |
| 33 '#bcbd22', # curry yellow-green | |
| 34 '#17becf' # blue-teal | |
| 35 ] | |
| 36 | |
| 37 | |
| 38 def visualize_pr_curve_plotly(df1, df2, pos_label, title=None): | |
| 39 """output pr-curve in html using plotly | |
| 40 | |
| 41 df1 : pandas.DataFrame | |
| 42 Containing y_true | |
| 43 df2 : pandas.DataFrame | |
| 44 Containing y_score | |
| 45 pos_label : None | |
| 46 The label of positive class | |
| 47 title : str | |
| 48 Plot title | |
| 49 """ | |
| 50 data = [] | |
| 51 for idx in range(df1.shape[1]): | |
| 52 y_true = df1.iloc[:, idx].values | |
| 53 y_score = df2.iloc[:, idx].values | |
| 54 | |
| 55 precision, recall, _ = precision_recall_curve( | |
| 56 y_true, y_score, pos_label=pos_label) | |
| 57 ap = average_precision_score( | |
| 58 y_true, y_score, pos_label=pos_label or 1) | |
| 59 | |
| 60 trace = go.Scatter( | |
| 61 x=recall, | |
| 62 y=precision, | |
| 63 mode='lines', | |
| 64 marker=dict( | |
| 65 color=default_colors[idx % len(default_colors)] | |
| 66 ), | |
| 67 name='%s (area = %.3f)' % (idx, ap) | |
| 68 ) | |
| 69 data.append(trace) | |
| 70 | |
| 71 layout = go.Layout( | |
| 72 xaxis=dict( | |
| 73 title='Recall', | |
| 74 linecolor='lightslategray', | |
| 75 linewidth=1 | |
| 76 ), | |
| 77 yaxis=dict( | |
| 78 title='Precision', | |
| 79 linecolor='lightslategray', | |
| 80 linewidth=1 | |
| 81 ), | |
| 82 title=dict( | |
| 83 text=title or 'Precision-Recall Curve', | |
| 84 x=0.5, | |
| 85 y=0.92, | |
| 86 xanchor='center', | |
| 87 yanchor='top' | |
| 88 ), | |
| 89 font=dict( | |
| 90 family="sans-serif", | |
| 91 size=11 | |
| 92 ), | |
| 93 # control backgroud colors | |
| 94 plot_bgcolor='rgba(255,255,255,0)' | |
| 95 ) | |
| 96 """ | |
| 97 legend=dict( | |
| 98 x=0.95, | |
| 99 y=0, | |
| 100 traceorder="normal", | |
| 101 font=dict( | |
| 102 family="sans-serif", | |
| 103 size=9, | |
| 104 color="black" | |
| 105 ), | |
| 106 bgcolor="LightSteelBlue", | |
| 107 bordercolor="Black", | |
| 108 borderwidth=2 | |
| 109 ),""" | |
| 110 | |
| 111 fig = go.Figure(data=data, layout=layout) | |
| 112 | |
| 113 plotly.offline.plot(fig, filename="output.html", auto_open=False) | |
| 114 # to be discovered by `from_work_dir` | |
| 115 os.rename('output.html', 'output') | |
| 116 | |
| 117 | |
| 118 def visualize_pr_curve_matplotlib(df1, df2, pos_label, title=None): | |
| 119 """visualize pr-curve using matplotlib and output svg image | |
| 120 """ | |
| 121 backend = matplotlib.get_backend() | |
| 122 if "inline" not in backend: | |
| 123 matplotlib.use("SVG") | |
| 124 plt.style.use('seaborn-colorblind') | |
| 125 plt.figure() | |
| 126 | |
| 127 for idx in range(df1.shape[1]): | |
| 128 y_true = df1.iloc[:, idx].values | |
| 129 y_score = df2.iloc[:, idx].values | |
| 130 | |
| 131 precision, recall, _ = precision_recall_curve( | |
| 132 y_true, y_score, pos_label=pos_label) | |
| 133 ap = average_precision_score( | |
| 134 y_true, y_score, pos_label=pos_label or 1) | |
| 135 | |
| 136 plt.step(recall, precision, 'r-', color="black", alpha=0.3, | |
| 137 lw=1, where="post", label='%s (area = %.3f)' % (idx, ap)) | |
| 138 | |
| 139 plt.xlim([0.0, 1.0]) | |
| 140 plt.ylim([0.0, 1.05]) | |
| 141 plt.xlabel('Recall') | |
| 142 plt.ylabel('Precision') | |
| 143 title = title or 'Precision-Recall Curve' | |
| 144 plt.title(title) | |
| 145 folder = os.getcwd() | |
| 146 plt.savefig(os.path.join(folder, "output.svg"), format="svg") | |
| 147 os.rename(os.path.join(folder, "output.svg"), | |
| 148 os.path.join(folder, "output")) | |
| 149 | |
| 150 | |
| 151 def visualize_roc_curve_plotly(df1, df2, pos_label, | |
| 152 drop_intermediate=True, | |
| 153 title=None): | |
| 154 """output roc-curve in html using plotly | |
| 155 | |
| 156 df1 : pandas.DataFrame | |
| 157 Containing y_true | |
| 158 df2 : pandas.DataFrame | |
| 159 Containing y_score | |
| 160 pos_label : None | |
| 161 The label of positive class | |
| 162 drop_intermediate : bool | |
| 163 Whether to drop some suboptimal thresholds | |
| 164 title : str | |
| 165 Plot title | |
| 166 """ | |
| 167 data = [] | |
| 168 for idx in range(df1.shape[1]): | |
| 169 y_true = df1.iloc[:, idx].values | |
| 170 y_score = df2.iloc[:, idx].values | |
| 171 | |
| 172 fpr, tpr, _ = roc_curve(y_true, y_score, pos_label=pos_label, | |
| 173 drop_intermediate=drop_intermediate) | |
| 174 roc_auc = auc(fpr, tpr) | |
| 175 | |
| 176 trace = go.Scatter( | |
| 177 x=fpr, | |
| 178 y=tpr, | |
| 179 mode='lines', | |
| 180 marker=dict( | |
| 181 color=default_colors[idx % len(default_colors)] | |
| 182 ), | |
| 183 name='%s (area = %.3f)' % (idx, roc_auc) | |
| 184 ) | |
| 185 data.append(trace) | |
| 186 | |
| 187 layout = go.Layout( | |
| 188 xaxis=dict( | |
| 189 title='False Positive Rate', | |
| 190 linecolor='lightslategray', | |
| 191 linewidth=1 | |
| 192 ), | |
| 193 yaxis=dict( | |
| 194 title='True Positive Rate', | |
| 195 linecolor='lightslategray', | |
| 196 linewidth=1 | |
| 197 ), | |
| 198 title=dict( | |
| 199 text=title or 'Receiver Operating Characteristic (ROC) Curve', | |
| 200 x=0.5, | |
| 201 y=0.92, | |
| 202 xanchor='center', | |
| 203 yanchor='top' | |
| 204 ), | |
| 205 font=dict( | |
| 206 family="sans-serif", | |
| 207 size=11 | |
| 208 ), | |
| 209 # control backgroud colors | |
| 210 plot_bgcolor='rgba(255,255,255,0)' | |
| 211 ) | |
| 212 """ | |
| 213 # legend=dict( | |
| 214 # x=0.95, | |
| 215 # y=0, | |
| 216 # traceorder="normal", | |
| 217 # font=dict( | |
| 218 # family="sans-serif", | |
| 219 # size=9, | |
| 220 # color="black" | |
| 221 # ), | |
| 222 # bgcolor="LightSteelBlue", | |
| 223 # bordercolor="Black", | |
| 224 # borderwidth=2 | |
| 225 # ), | |
| 226 """ | |
| 227 | |
| 228 fig = go.Figure(data=data, layout=layout) | |
| 229 | |
| 230 plotly.offline.plot(fig, filename="output.html", auto_open=False) | |
| 231 # to be discovered by `from_work_dir` | |
| 232 os.rename('output.html', 'output') | |
| 233 | |
| 234 | |
| 235 def visualize_roc_curve_matplotlib(df1, df2, pos_label, | |
| 236 drop_intermediate=True, | |
| 237 title=None): | |
| 238 """visualize roc-curve using matplotlib and output svg image | |
| 239 """ | |
| 240 backend = matplotlib.get_backend() | |
| 241 if "inline" not in backend: | |
| 242 matplotlib.use("SVG") | |
| 243 plt.style.use('seaborn-colorblind') | |
| 244 plt.figure() | |
| 245 | |
| 246 for idx in range(df1.shape[1]): | |
| 247 y_true = df1.iloc[:, idx].values | |
| 248 y_score = df2.iloc[:, idx].values | |
| 249 | |
| 250 fpr, tpr, _ = roc_curve(y_true, y_score, pos_label=pos_label, | |
| 251 drop_intermediate=drop_intermediate) | |
| 252 roc_auc = auc(fpr, tpr) | |
| 253 | |
| 254 plt.step(fpr, tpr, 'r-', color="black", alpha=0.3, lw=1, | |
| 255 where="post", label='%s (area = %.3f)' % (idx, roc_auc)) | |
| 256 | |
| 257 plt.xlim([0.0, 1.0]) | |
| 258 plt.ylim([0.0, 1.05]) | |
| 259 plt.xlabel('False Positive Rate') | |
| 260 plt.ylabel('True Positive Rate') | |
| 261 title = title or 'Receiver Operating Characteristic (ROC) Curve' | |
| 262 plt.title(title) | |
| 263 folder = os.getcwd() | |
| 264 plt.savefig(os.path.join(folder, "output.svg"), format="svg") | |
| 265 os.rename(os.path.join(folder, "output.svg"), | |
| 266 os.path.join(folder, "output")) | |
| 267 | |
| 268 | |
| 269 def get_dataframe(file_path, plot_selection, header_name, column_name): | |
| 270 header = 'infer' if plot_selection[header_name] else None | |
| 271 column_option = plot_selection[column_name]["selected_column_selector_option"] | |
| 272 if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: | |
| 273 col = plot_selection[column_name]["col1"] | |
| 274 else: | |
| 275 col = None | |
| 276 _, input_df = read_columns(file_path, c=col, | |
| 277 c_option=column_option, | |
| 278 return_df=True, | |
| 279 sep='\t', header=header, | |
| 280 parse_dates=True) | |
| 281 return input_df | |
| 282 | |
| 283 | |
| 284 def main(inputs, infile_estimator=None, infile1=None, | |
| 285 infile2=None, outfile_result=None, | |
| 286 outfile_object=None, groups=None, | |
| 287 ref_seq=None, intervals=None, | |
| 288 targets=None, fasta_path=None, | |
| 289 model_config=None, true_labels=None, | |
| 290 predicted_labels=None, plot_color=None, | |
| 291 title=None): | |
| 292 """ | |
| 293 Parameter | |
| 294 --------- | |
| 295 inputs : str | |
| 296 File path to galaxy tool parameter | |
| 297 | |
| 298 infile_estimator : str, default is None | |
| 299 File path to estimator | |
| 300 | |
| 301 infile1 : str, default is None | |
| 302 File path to dataset containing features or true labels. | |
| 303 | |
| 304 infile2 : str, default is None | |
| 305 File path to dataset containing target values or predicted | |
| 306 probabilities. | |
| 307 | |
| 308 outfile_result : str, default is None | |
| 309 File path to save the results, either cv_results or test result | |
| 310 | |
| 311 outfile_object : str, default is None | |
| 312 File path to save searchCV object | |
| 313 | |
| 314 groups : str, default is None | |
| 315 File path to dataset containing groups labels | |
| 316 | |
| 317 ref_seq : str, default is None | |
| 318 File path to dataset containing genome sequence file | |
| 319 | |
| 320 intervals : str, default is None | |
| 321 File path to dataset containing interval file | |
| 322 | |
| 323 targets : str, default is None | |
| 324 File path to dataset compressed target bed file | |
| 325 | |
| 326 fasta_path : str, default is None | |
| 327 File path to dataset containing fasta file | |
| 328 | |
| 329 model_config : str, default is None | |
| 330 File path to dataset containing JSON config for neural networks | |
| 331 | |
| 332 true_labels : str, default is None | |
| 333 File path to dataset containing true labels | |
| 334 | |
| 335 predicted_labels : str, default is None | |
| 336 File path to dataset containing true predicted labels | |
| 337 | |
| 338 plot_color : str, default is None | |
| 339 Color of the confusion matrix heatmap | |
| 340 | |
| 341 title : str, default is None | |
| 342 Title of the confusion matrix heatmap | |
| 343 """ | |
| 344 warnings.simplefilter('ignore') | |
| 345 | |
| 346 with open(inputs, 'r') as param_handler: | |
| 347 params = json.load(param_handler) | |
| 348 | |
| 349 title = params['plotting_selection']['title'].strip() | |
| 350 plot_type = params['plotting_selection']['plot_type'] | |
| 351 plot_format = params['plotting_selection']['plot_format'] | |
| 352 | |
| 353 if plot_type == 'feature_importances': | |
| 354 with open(infile_estimator, 'rb') as estimator_handler: | |
| 355 estimator = load_model(estimator_handler) | |
| 356 | |
| 357 column_option = (params['plotting_selection'] | |
| 358 ['column_selector_options'] | |
| 359 ['selected_column_selector_option']) | |
| 360 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 361 'by_header_name', 'all_but_by_header_name']: | |
| 362 c = (params['plotting_selection'] | |
| 363 ['column_selector_options']['col1']) | |
| 364 else: | |
| 365 c = None | |
| 366 | |
| 367 _, input_df = read_columns(infile1, c=c, | |
| 368 c_option=column_option, | |
| 369 return_df=True, | |
| 370 sep='\t', header='infer', | |
| 371 parse_dates=True) | |
| 372 | |
| 373 feature_names = input_df.columns.values | |
| 374 | |
| 375 if isinstance(estimator, Pipeline): | |
| 376 for st in estimator.steps[:-1]: | |
| 377 if isinstance(st[-1], SelectorMixin): | |
| 378 mask = st[-1].get_support() | |
| 379 feature_names = feature_names[mask] | |
| 380 estimator = estimator.steps[-1][-1] | |
| 381 | |
| 382 if hasattr(estimator, 'coef_'): | |
| 383 coefs = estimator.coef_ | |
| 384 else: | |
| 385 coefs = getattr(estimator, 'feature_importances_', None) | |
| 386 if coefs is None: | |
| 387 raise RuntimeError('The classifier does not expose ' | |
| 388 '"coef_" or "feature_importances_" ' | |
| 389 'attributes') | |
| 390 | |
| 391 threshold = params['plotting_selection']['threshold'] | |
| 392 if threshold is not None: | |
| 393 mask = (coefs > threshold) | (coefs < -threshold) | |
| 394 coefs = coefs[mask] | |
| 395 feature_names = feature_names[mask] | |
| 396 | |
| 397 # sort | |
| 398 indices = np.argsort(coefs)[::-1] | |
| 399 | |
| 400 trace = go.Bar(x=feature_names[indices], | |
| 401 y=coefs[indices]) | |
| 402 layout = go.Layout(title=title or "Feature Importances") | |
| 403 fig = go.Figure(data=[trace], layout=layout) | |
| 404 | |
| 405 plotly.offline.plot(fig, filename="output.html", | |
| 406 auto_open=False) | |
| 407 # to be discovered by `from_work_dir` | |
| 408 os.rename('output.html', 'output') | |
| 409 | |
| 410 return 0 | |
| 411 | |
| 412 elif plot_type in ('pr_curve', 'roc_curve'): | |
| 413 df1 = pd.read_csv(infile1, sep='\t', header='infer') | |
| 414 df2 = pd.read_csv(infile2, sep='\t', header='infer').astype(np.float32) | |
| 415 | |
| 416 minimum = params['plotting_selection']['report_minimum_n_positives'] | |
| 417 # filter out columns whose n_positives is beblow the threhold | |
| 418 if minimum: | |
| 419 mask = df1.sum(axis=0) >= minimum | |
| 420 df1 = df1.loc[:, mask] | |
| 421 df2 = df2.loc[:, mask] | |
| 422 | |
| 423 pos_label = params['plotting_selection']['pos_label'].strip() \ | |
| 424 or None | |
| 425 | |
| 426 if plot_type == 'pr_curve': | |
| 427 if plot_format == 'plotly_html': | |
| 428 visualize_pr_curve_plotly(df1, df2, pos_label, title=title) | |
| 429 else: | |
| 430 visualize_pr_curve_matplotlib(df1, df2, pos_label, title) | |
| 431 else: # 'roc_curve' | |
| 432 drop_intermediate = (params['plotting_selection'] | |
| 433 ['drop_intermediate']) | |
| 434 if plot_format == 'plotly_html': | |
| 435 visualize_roc_curve_plotly(df1, df2, pos_label, | |
| 436 drop_intermediate=drop_intermediate, | |
| 437 title=title) | |
| 438 else: | |
| 439 visualize_roc_curve_matplotlib( | |
| 440 df1, df2, pos_label, | |
| 441 drop_intermediate=drop_intermediate, | |
| 442 title=title) | |
| 443 | |
| 444 return 0 | |
| 445 | |
| 446 elif plot_type == 'rfecv_gridscores': | |
| 447 input_df = pd.read_csv(infile1, sep='\t', header='infer') | |
| 448 scores = input_df.iloc[:, 0] | |
| 449 steps = params['plotting_selection']['steps'].strip() | |
| 450 steps = safe_eval(steps) | |
| 451 | |
| 452 data = go.Scatter( | |
| 453 x=list(range(len(scores))), | |
| 454 y=scores, | |
| 455 text=[str(_) for _ in steps] if steps else None, | |
| 456 mode='lines' | |
| 457 ) | |
| 458 layout = go.Layout( | |
| 459 xaxis=dict(title="Number of features selected"), | |
| 460 yaxis=dict(title="Cross validation score"), | |
| 461 title=dict( | |
| 462 text=title or None, | |
| 463 x=0.5, | |
| 464 y=0.92, | |
| 465 xanchor='center', | |
| 466 yanchor='top' | |
| 467 ), | |
| 468 font=dict( | |
| 469 family="sans-serif", | |
| 470 size=11 | |
| 471 ), | |
| 472 # control backgroud colors | |
| 473 plot_bgcolor='rgba(255,255,255,0)' | |
| 474 ) | |
| 475 """ | |
| 476 # legend=dict( | |
| 477 # x=0.95, | |
| 478 # y=0, | |
| 479 # traceorder="normal", | |
| 480 # font=dict( | |
| 481 # family="sans-serif", | |
| 482 # size=9, | |
| 483 # color="black" | |
| 484 # ), | |
| 485 # bgcolor="LightSteelBlue", | |
| 486 # bordercolor="Black", | |
| 487 # borderwidth=2 | |
| 488 # ), | |
| 489 """ | |
| 490 | |
| 491 fig = go.Figure(data=[data], layout=layout) | |
| 492 plotly.offline.plot(fig, filename="output.html", | |
| 493 auto_open=False) | |
| 494 # to be discovered by `from_work_dir` | |
| 495 os.rename('output.html', 'output') | |
| 496 | |
| 497 return 0 | |
| 498 | |
| 499 elif plot_type == 'learning_curve': | |
| 500 input_df = pd.read_csv(infile1, sep='\t', header='infer') | |
| 501 plot_std_err = params['plotting_selection']['plot_std_err'] | |
| 502 data1 = go.Scatter( | |
| 503 x=input_df['train_sizes_abs'], | |
| 504 y=input_df['mean_train_scores'], | |
| 505 error_y=dict( | |
| 506 array=input_df['std_train_scores'] | |
| 507 ) if plot_std_err else None, | |
| 508 mode='lines', | |
| 509 name="Train Scores", | |
| 510 ) | |
| 511 data2 = go.Scatter( | |
| 512 x=input_df['train_sizes_abs'], | |
| 513 y=input_df['mean_test_scores'], | |
| 514 error_y=dict( | |
| 515 array=input_df['std_test_scores'] | |
| 516 ) if plot_std_err else None, | |
| 517 mode='lines', | |
| 518 name="Test Scores", | |
| 519 ) | |
| 520 layout = dict( | |
| 521 xaxis=dict( | |
| 522 title='No. of samples' | |
| 523 ), | |
| 524 yaxis=dict( | |
| 525 title='Performance Score' | |
| 526 ), | |
| 527 # modify these configurations to customize image | |
| 528 title=dict( | |
| 529 text=title or 'Learning Curve', | |
| 530 x=0.5, | |
| 531 y=0.92, | |
| 532 xanchor='center', | |
| 533 yanchor='top' | |
| 534 ), | |
| 535 font=dict( | |
| 536 family="sans-serif", | |
| 537 size=11 | |
| 538 ), | |
| 539 # control backgroud colors | |
| 540 plot_bgcolor='rgba(255,255,255,0)' | |
| 541 ) | |
| 542 """ | |
| 543 # legend=dict( | |
| 544 # x=0.95, | |
| 545 # y=0, | |
| 546 # traceorder="normal", | |
| 547 # font=dict( | |
| 548 # family="sans-serif", | |
| 549 # size=9, | |
| 550 # color="black" | |
| 551 # ), | |
| 552 # bgcolor="LightSteelBlue", | |
| 553 # bordercolor="Black", | |
| 554 # borderwidth=2 | |
| 555 # ), | |
| 556 """ | |
| 557 | |
| 558 fig = go.Figure(data=[data1, data2], layout=layout) | |
| 559 plotly.offline.plot(fig, filename="output.html", | |
| 560 auto_open=False) | |
| 561 # to be discovered by `from_work_dir` | |
| 562 os.rename('output.html', 'output') | |
| 563 | |
| 564 return 0 | |
| 565 | |
| 566 elif plot_type == 'keras_plot_model': | |
| 567 with open(model_config, 'r') as f: | |
| 568 model_str = f.read() | |
| 569 model = model_from_json(model_str) | |
| 570 plot_model(model, to_file="output.png") | |
| 571 os.rename('output.png', 'output') | |
| 572 | |
| 573 return 0 | |
| 574 | |
| 575 elif plot_type == 'classification_confusion_matrix': | |
| 576 plot_selection = params["plotting_selection"] | |
| 577 input_true = get_dataframe(true_labels, plot_selection, "header_true", "column_selector_options_true") | |
| 578 header_predicted = 'infer' if plot_selection["header_predicted"] else None | |
| 579 input_predicted = pd.read_csv(predicted_labels, sep='\t', parse_dates=True, header=header_predicted) | |
| 580 true_classes = input_true.iloc[:, -1].copy() | |
| 581 predicted_classes = input_predicted.iloc[:, -1].copy() | |
| 582 axis_labels = list(set(true_classes)) | |
| 583 c_matrix = confusion_matrix(true_classes, predicted_classes) | |
| 584 fig, ax = plt.subplots(figsize=(7, 7)) | |
| 585 im = plt.imshow(c_matrix, cmap=plot_color) | |
| 586 for i in range(len(c_matrix)): | |
| 587 for j in range(len(c_matrix)): | |
| 588 ax.text(j, i, c_matrix[i, j], ha="center", va="center", color="k") | |
| 589 ax.set_ylabel('True class labels') | |
| 590 ax.set_xlabel('Predicted class labels') | |
| 591 ax.set_title(title) | |
| 592 ax.set_xticks(axis_labels) | |
| 593 ax.set_yticks(axis_labels) | |
| 594 fig.colorbar(im, ax=ax) | |
| 595 fig.tight_layout() | |
| 596 plt.savefig("output.png", dpi=125) | |
| 597 os.rename('output.png', 'output') | |
| 598 | |
| 599 return 0 | |
| 600 | |
| 601 # save pdf file to disk | |
| 602 # fig.write_image("image.pdf", format='pdf') | |
| 603 # fig.write_image("image.pdf", format='pdf', width=340*2, height=226*2) | |
| 604 | |
| 605 | |
| 606 if __name__ == '__main__': | |
| 607 aparser = argparse.ArgumentParser() | |
| 608 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 609 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
| 610 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 611 aparser.add_argument("-y", "--infile2", dest="infile2") | |
| 612 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
| 613 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
| 614 aparser.add_argument("-g", "--groups", dest="groups") | |
| 615 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
| 616 aparser.add_argument("-b", "--intervals", dest="intervals") | |
| 617 aparser.add_argument("-t", "--targets", dest="targets") | |
| 618 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
| 619 aparser.add_argument("-c", "--model_config", dest="model_config") | |
| 620 aparser.add_argument("-tl", "--true_labels", dest="true_labels") | |
| 621 aparser.add_argument("-pl", "--predicted_labels", dest="predicted_labels") | |
| 622 aparser.add_argument("-pc", "--plot_color", dest="plot_color") | |
| 623 aparser.add_argument("-pt", "--title", dest="title") | |
| 624 args = aparser.parse_args() | |
| 625 | |
| 626 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | |
| 627 args.outfile_result, outfile_object=args.outfile_object, | |
| 628 groups=args.groups, ref_seq=args.ref_seq, intervals=args.intervals, | |
| 629 targets=args.targets, fasta_path=args.fasta_path, | |
| 630 model_config=args.model_config, true_labels=args.true_labels, | |
| 631 predicted_labels=args.predicted_labels, | |
| 632 plot_color=args.plot_color, | |
| 633 title=args.title) |
