Mercurial > repos > bgruening > sklearn_pca
comparison search_model_validation.py @ 0:2d7016b3ae92 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 2afb24f3c81d625312186750a714d702363012b5"
author | bgruening |
---|---|
date | Fri, 02 Oct 2020 08:45:21 +0000 |
parents | |
children | 132805688fa3 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:2d7016b3ae92 |
---|---|
1 import argparse | |
2 import collections | |
3 import imblearn | |
4 import joblib | |
5 import json | |
6 import numpy as np | |
7 import os | |
8 import pandas as pd | |
9 import pickle | |
10 import skrebate | |
11 import sys | |
12 import warnings | |
13 from scipy.io import mmread | |
14 from sklearn import (cluster, decomposition, feature_selection, | |
15 kernel_approximation, model_selection, preprocessing) | |
16 from sklearn.exceptions import FitFailedWarning | |
17 from sklearn.model_selection._validation import _score, cross_validate | |
18 from sklearn.model_selection import _search, _validation | |
19 from sklearn.pipeline import Pipeline | |
20 | |
21 from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model, | |
22 read_columns, try_get_attr, get_module, | |
23 clean_params, get_main_estimator) | |
24 | |
25 | |
26 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | |
27 setattr(_search, '_fit_and_score', _fit_and_score) | |
28 setattr(_validation, '_fit_and_score', _fit_and_score) | |
29 | |
30 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) | |
31 # handle disk cache | |
32 CACHE_DIR = os.path.join(os.getcwd(), 'cached') | |
33 del os | |
34 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | |
35 'nthread', 'callbacks') | |
36 | |
37 | |
38 def _eval_search_params(params_builder): | |
39 search_params = {} | |
40 | |
41 for p in params_builder['param_set']: | |
42 search_list = p['sp_list'].strip() | |
43 if search_list == '': | |
44 continue | |
45 | |
46 param_name = p['sp_name'] | |
47 if param_name.lower().endswith(NON_SEARCHABLE): | |
48 print("Warning: `%s` is not eligible for search and was " | |
49 "omitted!" % param_name) | |
50 continue | |
51 | |
52 if not search_list.startswith(':'): | |
53 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
54 ev = safe_eval(search_list) | |
55 search_params[param_name] = ev | |
56 else: | |
57 # Have `:` before search list, asks for estimator evaluatio | |
58 safe_eval_es = SafeEval(load_estimators=True) | |
59 search_list = search_list[1:].strip() | |
60 # TODO maybe add regular express check | |
61 ev = safe_eval_es(search_list) | |
62 preprocessings = ( | |
63 preprocessing.StandardScaler(), preprocessing.Binarizer(), | |
64 preprocessing.MaxAbsScaler(), | |
65 preprocessing.Normalizer(), preprocessing.MinMaxScaler(), | |
66 preprocessing.PolynomialFeatures(), | |
67 preprocessing.RobustScaler(), feature_selection.SelectKBest(), | |
68 feature_selection.GenericUnivariateSelect(), | |
69 feature_selection.SelectPercentile(), | |
70 feature_selection.SelectFpr(), feature_selection.SelectFdr(), | |
71 feature_selection.SelectFwe(), | |
72 feature_selection.VarianceThreshold(), | |
73 decomposition.FactorAnalysis(random_state=0), | |
74 decomposition.FastICA(random_state=0), | |
75 decomposition.IncrementalPCA(), | |
76 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), | |
77 decomposition.LatentDirichletAllocation( | |
78 random_state=0, n_jobs=N_JOBS), | |
79 decomposition.MiniBatchDictionaryLearning( | |
80 random_state=0, n_jobs=N_JOBS), | |
81 decomposition.MiniBatchSparsePCA( | |
82 random_state=0, n_jobs=N_JOBS), | |
83 decomposition.NMF(random_state=0), | |
84 decomposition.PCA(random_state=0), | |
85 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | |
86 decomposition.TruncatedSVD(random_state=0), | |
87 kernel_approximation.Nystroem(random_state=0), | |
88 kernel_approximation.RBFSampler(random_state=0), | |
89 kernel_approximation.AdditiveChi2Sampler(), | |
90 kernel_approximation.SkewedChi2Sampler(random_state=0), | |
91 cluster.FeatureAgglomeration(), | |
92 skrebate.ReliefF(n_jobs=N_JOBS), | |
93 skrebate.SURF(n_jobs=N_JOBS), | |
94 skrebate.SURFstar(n_jobs=N_JOBS), | |
95 skrebate.MultiSURF(n_jobs=N_JOBS), | |
96 skrebate.MultiSURFstar(n_jobs=N_JOBS), | |
97 imblearn.under_sampling.ClusterCentroids( | |
98 random_state=0, n_jobs=N_JOBS), | |
99 imblearn.under_sampling.CondensedNearestNeighbour( | |
100 random_state=0, n_jobs=N_JOBS), | |
101 imblearn.under_sampling.EditedNearestNeighbours( | |
102 random_state=0, n_jobs=N_JOBS), | |
103 imblearn.under_sampling.RepeatedEditedNearestNeighbours( | |
104 random_state=0, n_jobs=N_JOBS), | |
105 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | |
106 imblearn.under_sampling.InstanceHardnessThreshold( | |
107 random_state=0, n_jobs=N_JOBS), | |
108 imblearn.under_sampling.NearMiss( | |
109 random_state=0, n_jobs=N_JOBS), | |
110 imblearn.under_sampling.NeighbourhoodCleaningRule( | |
111 random_state=0, n_jobs=N_JOBS), | |
112 imblearn.under_sampling.OneSidedSelection( | |
113 random_state=0, n_jobs=N_JOBS), | |
114 imblearn.under_sampling.RandomUnderSampler( | |
115 random_state=0), | |
116 imblearn.under_sampling.TomekLinks( | |
117 random_state=0, n_jobs=N_JOBS), | |
118 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | |
119 imblearn.over_sampling.RandomOverSampler(random_state=0), | |
120 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | |
121 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | |
122 imblearn.over_sampling.BorderlineSMOTE( | |
123 random_state=0, n_jobs=N_JOBS), | |
124 imblearn.over_sampling.SMOTENC( | |
125 categorical_features=[], random_state=0, n_jobs=N_JOBS), | |
126 imblearn.combine.SMOTEENN(random_state=0), | |
127 imblearn.combine.SMOTETomek(random_state=0)) | |
128 newlist = [] | |
129 for obj in ev: | |
130 if obj is None: | |
131 newlist.append(None) | |
132 elif obj == 'all_0': | |
133 newlist.extend(preprocessings[0:35]) | |
134 elif obj == 'sk_prep_all': # no KernalCenter() | |
135 newlist.extend(preprocessings[0:7]) | |
136 elif obj == 'fs_all': | |
137 newlist.extend(preprocessings[7:14]) | |
138 elif obj == 'decomp_all': | |
139 newlist.extend(preprocessings[14:25]) | |
140 elif obj == 'k_appr_all': | |
141 newlist.extend(preprocessings[25:29]) | |
142 elif obj == 'reb_all': | |
143 newlist.extend(preprocessings[30:35]) | |
144 elif obj == 'imb_all': | |
145 newlist.extend(preprocessings[35:54]) | |
146 elif type(obj) is int and -1 < obj < len(preprocessings): | |
147 newlist.append(preprocessings[obj]) | |
148 elif hasattr(obj, 'get_params'): # user uploaded object | |
149 if 'n_jobs' in obj.get_params(): | |
150 newlist.append(obj.set_params(n_jobs=N_JOBS)) | |
151 else: | |
152 newlist.append(obj) | |
153 else: | |
154 sys.exit("Unsupported estimator type: %r" % (obj)) | |
155 | |
156 search_params[param_name] = newlist | |
157 | |
158 return search_params | |
159 | |
160 | |
161 def _handle_X_y(estimator, params, infile1, infile2, loaded_df={}, | |
162 ref_seq=None, intervals=None, targets=None, | |
163 fasta_path=None): | |
164 """read inputs | |
165 | |
166 Params | |
167 ------- | |
168 estimator : estimator object | |
169 params : dict | |
170 Galaxy tool parameter inputs | |
171 infile1 : str | |
172 File path to dataset containing features | |
173 infile2 : str | |
174 File path to dataset containing target values | |
175 loaded_df : dict | |
176 Contains loaded DataFrame objects with file path as keys | |
177 ref_seq : str | |
178 File path to dataset containing genome sequence file | |
179 interval : str | |
180 File path to dataset containing interval file | |
181 targets : str | |
182 File path to dataset compressed target bed file | |
183 fasta_path : str | |
184 File path to dataset containing fasta file | |
185 | |
186 | |
187 Returns | |
188 ------- | |
189 estimator : estimator object after setting new attributes | |
190 X : numpy array | |
191 y : numpy array | |
192 """ | |
193 estimator_params = estimator.get_params() | |
194 | |
195 input_type = params['input_options']['selected_input'] | |
196 # tabular input | |
197 if input_type == 'tabular': | |
198 header = 'infer' if params['input_options']['header1'] else None | |
199 column_option = (params['input_options']['column_selector_options_1'] | |
200 ['selected_column_selector_option']) | |
201 if column_option in ['by_index_number', 'all_but_by_index_number', | |
202 'by_header_name', 'all_but_by_header_name']: | |
203 c = params['input_options']['column_selector_options_1']['col1'] | |
204 else: | |
205 c = None | |
206 | |
207 df_key = infile1 + repr(header) | |
208 | |
209 if df_key in loaded_df: | |
210 infile1 = loaded_df[df_key] | |
211 | |
212 df = pd.read_csv(infile1, sep='\t', header=header, | |
213 parse_dates=True) | |
214 loaded_df[df_key] = df | |
215 | |
216 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
217 # sparse input | |
218 elif input_type == 'sparse': | |
219 X = mmread(open(infile1, 'r')) | |
220 | |
221 # fasta_file input | |
222 elif input_type == 'seq_fasta': | |
223 pyfaidx = get_module('pyfaidx') | |
224 sequences = pyfaidx.Fasta(fasta_path) | |
225 n_seqs = len(sequences.keys()) | |
226 X = np.arange(n_seqs)[:, np.newaxis] | |
227 for param in estimator_params.keys(): | |
228 if param.endswith('fasta_path'): | |
229 estimator.set_params( | |
230 **{param: fasta_path}) | |
231 break | |
232 else: | |
233 raise ValueError( | |
234 "The selected estimator doesn't support " | |
235 "fasta file input! Please consider using " | |
236 "KerasGBatchClassifier with " | |
237 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
238 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
239 "in pipeline!") | |
240 | |
241 elif input_type == 'refseq_and_interval': | |
242 path_params = { | |
243 'data_batch_generator__ref_genome_path': ref_seq, | |
244 'data_batch_generator__intervals_path': intervals, | |
245 'data_batch_generator__target_path': targets | |
246 } | |
247 estimator.set_params(**path_params) | |
248 n_intervals = sum(1 for line in open(intervals)) | |
249 X = np.arange(n_intervals)[:, np.newaxis] | |
250 | |
251 # Get target y | |
252 header = 'infer' if params['input_options']['header2'] else None | |
253 column_option = (params['input_options']['column_selector_options_2'] | |
254 ['selected_column_selector_option2']) | |
255 if column_option in ['by_index_number', 'all_but_by_index_number', | |
256 'by_header_name', 'all_but_by_header_name']: | |
257 c = params['input_options']['column_selector_options_2']['col2'] | |
258 else: | |
259 c = None | |
260 | |
261 df_key = infile2 + repr(header) | |
262 if df_key in loaded_df: | |
263 infile2 = loaded_df[df_key] | |
264 else: | |
265 infile2 = pd.read_csv(infile2, sep='\t', | |
266 header=header, parse_dates=True) | |
267 loaded_df[df_key] = infile2 | |
268 | |
269 y = read_columns( | |
270 infile2, | |
271 c=c, | |
272 c_option=column_option, | |
273 sep='\t', | |
274 header=header, | |
275 parse_dates=True) | |
276 if len(y.shape) == 2 and y.shape[1] == 1: | |
277 y = y.ravel() | |
278 if input_type == 'refseq_and_interval': | |
279 estimator.set_params( | |
280 data_batch_generator__features=y.ravel().tolist()) | |
281 y = None | |
282 # end y | |
283 | |
284 return estimator, X, y | |
285 | |
286 | |
287 def _do_outer_cv(searcher, X, y, outer_cv, scoring, error_score='raise', | |
288 outfile=None): | |
289 """Do outer cross-validation for nested CV | |
290 | |
291 Parameters | |
292 ---------- | |
293 searcher : object | |
294 SearchCV object | |
295 X : numpy array | |
296 Containing features | |
297 y : numpy array | |
298 Target values or labels | |
299 outer_cv : int or CV splitter | |
300 Control the cv splitting | |
301 scoring : object | |
302 Scorer | |
303 error_score: str, float or numpy float | |
304 Whether to raise fit error or return an value | |
305 outfile : str | |
306 File path to store the restuls | |
307 """ | |
308 if error_score == 'raise': | |
309 rval = cross_validate( | |
310 searcher, X, y, scoring=scoring, | |
311 cv=outer_cv, n_jobs=N_JOBS, verbose=0, | |
312 error_score=error_score) | |
313 else: | |
314 warnings.simplefilter('always', FitFailedWarning) | |
315 with warnings.catch_warnings(record=True) as w: | |
316 try: | |
317 rval = cross_validate( | |
318 searcher, X, y, | |
319 scoring=scoring, | |
320 cv=outer_cv, n_jobs=N_JOBS, | |
321 verbose=0, | |
322 error_score=error_score) | |
323 except ValueError: | |
324 pass | |
325 for warning in w: | |
326 print(repr(warning.message)) | |
327 | |
328 keys = list(rval.keys()) | |
329 for k in keys: | |
330 if k.startswith('test'): | |
331 rval['mean_' + k] = np.mean(rval[k]) | |
332 rval['std_' + k] = np.std(rval[k]) | |
333 if k.endswith('time'): | |
334 rval.pop(k) | |
335 rval = pd.DataFrame(rval) | |
336 rval = rval[sorted(rval.columns)] | |
337 rval.to_csv(path_or_buf=outfile, sep='\t', header=True, index=False) | |
338 | |
339 | |
340 def _do_train_test_split_val(searcher, X, y, params, error_score='raise', | |
341 primary_scoring=None, groups=None, | |
342 outfile=None): | |
343 """ do train test split, searchCV validates on the train and then use | |
344 the best_estimator_ to evaluate on the test | |
345 | |
346 Returns | |
347 -------- | |
348 Fitted SearchCV object | |
349 """ | |
350 train_test_split = try_get_attr( | |
351 'galaxy_ml.model_validations', 'train_test_split') | |
352 split_options = params['outer_split'] | |
353 | |
354 # splits | |
355 if split_options['shuffle'] == 'stratified': | |
356 split_options['labels'] = y | |
357 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
358 elif split_options['shuffle'] == 'group': | |
359 if groups is None: | |
360 raise ValueError("No group based CV option was choosen for " | |
361 "group shuffle!") | |
362 split_options['labels'] = groups | |
363 if y is None: | |
364 X, X_test, groups, _ =\ | |
365 train_test_split(X, groups, **split_options) | |
366 else: | |
367 X, X_test, y, y_test, groups, _ =\ | |
368 train_test_split(X, y, groups, **split_options) | |
369 else: | |
370 if split_options['shuffle'] == 'None': | |
371 split_options['shuffle'] = None | |
372 X, X_test, y, y_test =\ | |
373 train_test_split(X, y, **split_options) | |
374 | |
375 if error_score == 'raise': | |
376 searcher.fit(X, y, groups=groups) | |
377 else: | |
378 warnings.simplefilter('always', FitFailedWarning) | |
379 with warnings.catch_warnings(record=True) as w: | |
380 try: | |
381 searcher.fit(X, y, groups=groups) | |
382 except ValueError: | |
383 pass | |
384 for warning in w: | |
385 print(repr(warning.message)) | |
386 | |
387 scorer_ = searcher.scorer_ | |
388 if isinstance(scorer_, collections.Mapping): | |
389 is_multimetric = True | |
390 else: | |
391 is_multimetric = False | |
392 | |
393 best_estimator_ = getattr(searcher, 'best_estimator_') | |
394 | |
395 # TODO Solve deep learning models in pipeline | |
396 if best_estimator_.__class__.__name__ == 'KerasGBatchClassifier': | |
397 test_score = best_estimator_.evaluate( | |
398 X_test, scorer=scorer_, is_multimetric=is_multimetric) | |
399 else: | |
400 test_score = _score(best_estimator_, X_test, | |
401 y_test, scorer_, | |
402 is_multimetric=is_multimetric) | |
403 | |
404 if not is_multimetric: | |
405 test_score = {primary_scoring: test_score} | |
406 for key, value in test_score.items(): | |
407 test_score[key] = [value] | |
408 result_df = pd.DataFrame(test_score) | |
409 result_df.to_csv(path_or_buf=outfile, sep='\t', header=True, | |
410 index=False) | |
411 | |
412 return searcher | |
413 | |
414 | |
415 def main(inputs, infile_estimator, infile1, infile2, | |
416 outfile_result, outfile_object=None, | |
417 outfile_weights=None, groups=None, | |
418 ref_seq=None, intervals=None, targets=None, | |
419 fasta_path=None): | |
420 """ | |
421 Parameter | |
422 --------- | |
423 inputs : str | |
424 File path to galaxy tool parameter | |
425 | |
426 infile_estimator : str | |
427 File path to estimator | |
428 | |
429 infile1 : str | |
430 File path to dataset containing features | |
431 | |
432 infile2 : str | |
433 File path to dataset containing target values | |
434 | |
435 outfile_result : str | |
436 File path to save the results, either cv_results or test result | |
437 | |
438 outfile_object : str, optional | |
439 File path to save searchCV object | |
440 | |
441 outfile_weights : str, optional | |
442 File path to save model weights | |
443 | |
444 groups : str | |
445 File path to dataset containing groups labels | |
446 | |
447 ref_seq : str | |
448 File path to dataset containing genome sequence file | |
449 | |
450 intervals : str | |
451 File path to dataset containing interval file | |
452 | |
453 targets : str | |
454 File path to dataset compressed target bed file | |
455 | |
456 fasta_path : str | |
457 File path to dataset containing fasta file | |
458 """ | |
459 warnings.simplefilter('ignore') | |
460 | |
461 # store read dataframe object | |
462 loaded_df = {} | |
463 | |
464 with open(inputs, 'r') as param_handler: | |
465 params = json.load(param_handler) | |
466 | |
467 # Override the refit parameter | |
468 params['search_schemes']['options']['refit'] = True \ | |
469 if params['save'] != 'nope' else False | |
470 | |
471 with open(infile_estimator, 'rb') as estimator_handler: | |
472 estimator = load_model(estimator_handler) | |
473 | |
474 optimizer = params['search_schemes']['selected_search_scheme'] | |
475 optimizer = getattr(model_selection, optimizer) | |
476 | |
477 # handle gridsearchcv options | |
478 options = params['search_schemes']['options'] | |
479 | |
480 if groups: | |
481 header = 'infer' if (options['cv_selector']['groups_selector'] | |
482 ['header_g']) else None | |
483 column_option = (options['cv_selector']['groups_selector'] | |
484 ['column_selector_options_g'] | |
485 ['selected_column_selector_option_g']) | |
486 if column_option in ['by_index_number', 'all_but_by_index_number', | |
487 'by_header_name', 'all_but_by_header_name']: | |
488 c = (options['cv_selector']['groups_selector'] | |
489 ['column_selector_options_g']['col_g']) | |
490 else: | |
491 c = None | |
492 | |
493 df_key = groups + repr(header) | |
494 | |
495 groups = pd.read_csv(groups, sep='\t', header=header, | |
496 parse_dates=True) | |
497 loaded_df[df_key] = groups | |
498 | |
499 groups = read_columns( | |
500 groups, | |
501 c=c, | |
502 c_option=column_option, | |
503 sep='\t', | |
504 header=header, | |
505 parse_dates=True) | |
506 groups = groups.ravel() | |
507 options['cv_selector']['groups_selector'] = groups | |
508 | |
509 splitter, groups = get_cv(options.pop('cv_selector')) | |
510 options['cv'] = splitter | |
511 primary_scoring = options['scoring']['primary_scoring'] | |
512 options['scoring'] = get_scoring(options['scoring']) | |
513 if options['error_score']: | |
514 options['error_score'] = 'raise' | |
515 else: | |
516 options['error_score'] = np.NaN | |
517 if options['refit'] and isinstance(options['scoring'], dict): | |
518 options['refit'] = primary_scoring | |
519 if 'pre_dispatch' in options and options['pre_dispatch'] == '': | |
520 options['pre_dispatch'] = None | |
521 | |
522 params_builder = params['search_schemes']['search_params_builder'] | |
523 param_grid = _eval_search_params(params_builder) | |
524 | |
525 estimator = clean_params(estimator) | |
526 | |
527 # save the SearchCV object without fit | |
528 if params['save'] == 'save_no_fit': | |
529 searcher = optimizer(estimator, param_grid, **options) | |
530 print(searcher) | |
531 with open(outfile_object, 'wb') as output_handler: | |
532 pickle.dump(searcher, output_handler, | |
533 pickle.HIGHEST_PROTOCOL) | |
534 return 0 | |
535 | |
536 # read inputs and loads new attributes, like paths | |
537 estimator, X, y = _handle_X_y(estimator, params, infile1, infile2, | |
538 loaded_df=loaded_df, ref_seq=ref_seq, | |
539 intervals=intervals, targets=targets, | |
540 fasta_path=fasta_path) | |
541 | |
542 # cache iraps_core fits could increase search speed significantly | |
543 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
544 main_est = get_main_estimator(estimator) | |
545 if main_est.__class__.__name__ == 'IRAPSClassifier': | |
546 main_est.set_params(memory=memory) | |
547 | |
548 searcher = optimizer(estimator, param_grid, **options) | |
549 | |
550 split_mode = params['outer_split'].pop('split_mode') | |
551 | |
552 if split_mode == 'nested_cv': | |
553 # make sure refit is choosen | |
554 # this could be True for sklearn models, but not the case for | |
555 # deep learning models | |
556 if not options['refit'] and \ | |
557 not all(hasattr(estimator, attr) | |
558 for attr in ('config', 'model_type')): | |
559 warnings.warn("Refit is change to `True` for nested validation!") | |
560 setattr(searcher, 'refit', True) | |
561 | |
562 outer_cv, _ = get_cv(params['outer_split']['cv_selector']) | |
563 # nested CV, outer cv using cross_validate | |
564 if options['error_score'] == 'raise': | |
565 rval = cross_validate( | |
566 searcher, X, y, scoring=options['scoring'], | |
567 cv=outer_cv, n_jobs=N_JOBS, | |
568 verbose=options['verbose'], | |
569 return_estimator=(params['save'] == 'save_estimator'), | |
570 error_score=options['error_score'], | |
571 return_train_score=True) | |
572 else: | |
573 warnings.simplefilter('always', FitFailedWarning) | |
574 with warnings.catch_warnings(record=True) as w: | |
575 try: | |
576 rval = cross_validate( | |
577 searcher, X, y, | |
578 scoring=options['scoring'], | |
579 cv=outer_cv, n_jobs=N_JOBS, | |
580 verbose=options['verbose'], | |
581 return_estimator=(params['save'] == 'save_estimator'), | |
582 error_score=options['error_score'], | |
583 return_train_score=True) | |
584 except ValueError: | |
585 pass | |
586 for warning in w: | |
587 print(repr(warning.message)) | |
588 | |
589 fitted_searchers = rval.pop('estimator', []) | |
590 if fitted_searchers: | |
591 import os | |
592 pwd = os.getcwd() | |
593 save_dir = os.path.join(pwd, 'cv_results_in_folds') | |
594 try: | |
595 os.mkdir(save_dir) | |
596 for idx, obj in enumerate(fitted_searchers): | |
597 target_name = 'cv_results_' + '_' + 'split%d' % idx | |
598 target_path = os.path.join(pwd, save_dir, target_name) | |
599 cv_results_ = getattr(obj, 'cv_results_', None) | |
600 if not cv_results_: | |
601 print("%s is not available" % target_name) | |
602 continue | |
603 cv_results_ = pd.DataFrame(cv_results_) | |
604 cv_results_ = cv_results_[sorted(cv_results_.columns)] | |
605 cv_results_.to_csv(target_path, sep='\t', header=True, | |
606 index=False) | |
607 except Exception as e: | |
608 print(e) | |
609 finally: | |
610 del os | |
611 | |
612 keys = list(rval.keys()) | |
613 for k in keys: | |
614 if k.startswith('test'): | |
615 rval['mean_' + k] = np.mean(rval[k]) | |
616 rval['std_' + k] = np.std(rval[k]) | |
617 if k.endswith('time'): | |
618 rval.pop(k) | |
619 rval = pd.DataFrame(rval) | |
620 rval = rval[sorted(rval.columns)] | |
621 rval.to_csv(path_or_buf=outfile_result, sep='\t', header=True, | |
622 index=False) | |
623 | |
624 return 0 | |
625 | |
626 # deprecate train test split mode | |
627 """searcher = _do_train_test_split_val( | |
628 searcher, X, y, params, | |
629 primary_scoring=primary_scoring, | |
630 error_score=options['error_score'], | |
631 groups=groups, | |
632 outfile=outfile_result)""" | |
633 | |
634 # no outer split | |
635 else: | |
636 searcher.set_params(n_jobs=N_JOBS) | |
637 if options['error_score'] == 'raise': | |
638 searcher.fit(X, y, groups=groups) | |
639 else: | |
640 warnings.simplefilter('always', FitFailedWarning) | |
641 with warnings.catch_warnings(record=True) as w: | |
642 try: | |
643 searcher.fit(X, y, groups=groups) | |
644 except ValueError: | |
645 pass | |
646 for warning in w: | |
647 print(repr(warning.message)) | |
648 | |
649 cv_results = pd.DataFrame(searcher.cv_results_) | |
650 cv_results = cv_results[sorted(cv_results.columns)] | |
651 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', | |
652 header=True, index=False) | |
653 | |
654 memory.clear(warn=False) | |
655 | |
656 # output best estimator, and weights if applicable | |
657 if outfile_object: | |
658 best_estimator_ = getattr(searcher, 'best_estimator_', None) | |
659 if not best_estimator_: | |
660 warnings.warn("GridSearchCV object has no attribute " | |
661 "'best_estimator_', because either it's " | |
662 "nested gridsearch or `refit` is False!") | |
663 return | |
664 | |
665 # clean prams | |
666 best_estimator_ = clean_params(best_estimator_) | |
667 | |
668 main_est = get_main_estimator(best_estimator_) | |
669 | |
670 if hasattr(main_est, 'model_') \ | |
671 and hasattr(main_est, 'save_weights'): | |
672 if outfile_weights: | |
673 main_est.save_weights(outfile_weights) | |
674 del main_est.model_ | |
675 del main_est.fit_params | |
676 del main_est.model_class_ | |
677 del main_est.validation_data | |
678 if getattr(main_est, 'data_generator_', None): | |
679 del main_est.data_generator_ | |
680 | |
681 with open(outfile_object, 'wb') as output_handler: | |
682 print("Best estimator is saved: %s " % repr(best_estimator_)) | |
683 pickle.dump(best_estimator_, output_handler, | |
684 pickle.HIGHEST_PROTOCOL) | |
685 | |
686 | |
687 if __name__ == '__main__': | |
688 aparser = argparse.ArgumentParser() | |
689 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
690 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
691 aparser.add_argument("-X", "--infile1", dest="infile1") | |
692 aparser.add_argument("-y", "--infile2", dest="infile2") | |
693 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
694 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
695 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
696 aparser.add_argument("-g", "--groups", dest="groups") | |
697 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
698 aparser.add_argument("-b", "--intervals", dest="intervals") | |
699 aparser.add_argument("-t", "--targets", dest="targets") | |
700 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
701 args = aparser.parse_args() | |
702 | |
703 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | |
704 args.outfile_result, outfile_object=args.outfile_object, | |
705 outfile_weights=args.outfile_weights, groups=args.groups, | |
706 ref_seq=args.ref_seq, intervals=args.intervals, | |
707 targets=args.targets, fasta_path=args.fasta_path) |