Mercurial > repos > bgruening > sklearn_pca
comparison simple_model_fit.py @ 0:2d7016b3ae92 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 2afb24f3c81d625312186750a714d702363012b5"
author | bgruening |
---|---|
date | Fri, 02 Oct 2020 08:45:21 +0000 |
parents | |
children | 132805688fa3 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:2d7016b3ae92 |
---|---|
1 import argparse | |
2 import json | |
3 import pandas as pd | |
4 import pickle | |
5 | |
6 from galaxy_ml.utils import load_model, read_columns | |
7 from sklearn.pipeline import Pipeline | |
8 | |
9 | |
10 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | |
11 | |
12 | |
13 # TODO import from galaxy_ml.utils in future versions | |
14 def clean_params(estimator, n_jobs=None): | |
15 """clean unwanted hyperparameter settings | |
16 | |
17 If n_jobs is not None, set it into the estimator, if applicable | |
18 | |
19 Return | |
20 ------ | |
21 Cleaned estimator object | |
22 """ | |
23 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', | |
24 'ReduceLROnPlateau', 'CSVLogger', 'None') | |
25 | |
26 estimator_params = estimator.get_params() | |
27 | |
28 for name, p in estimator_params.items(): | |
29 # all potential unauthorized file write | |
30 if name == 'memory' or name.endswith('__memory') \ | |
31 or name.endswith('_path'): | |
32 new_p = {name: None} | |
33 estimator.set_params(**new_p) | |
34 elif n_jobs is not None and (name == 'n_jobs' or | |
35 name.endswith('__n_jobs')): | |
36 new_p = {name: n_jobs} | |
37 estimator.set_params(**new_p) | |
38 elif name.endswith('callbacks'): | |
39 for cb in p: | |
40 cb_type = cb['callback_selection']['callback_type'] | |
41 if cb_type not in ALLOWED_CALLBACKS: | |
42 raise ValueError( | |
43 "Prohibited callback type: %s!" % cb_type) | |
44 | |
45 return estimator | |
46 | |
47 | |
48 def _get_X_y(params, infile1, infile2): | |
49 """ read from inputs and output X and y | |
50 | |
51 Parameters | |
52 ---------- | |
53 params : dict | |
54 Tool inputs parameter | |
55 infile1 : str | |
56 File path to dataset containing features | |
57 infile2 : str | |
58 File path to dataset containing target values | |
59 | |
60 """ | |
61 # store read dataframe object | |
62 loaded_df = {} | |
63 | |
64 input_type = params['input_options']['selected_input'] | |
65 # tabular input | |
66 if input_type == 'tabular': | |
67 header = 'infer' if params['input_options']['header1'] else None | |
68 column_option = (params['input_options']['column_selector_options_1'] | |
69 ['selected_column_selector_option']) | |
70 if column_option in ['by_index_number', 'all_but_by_index_number', | |
71 'by_header_name', 'all_but_by_header_name']: | |
72 c = params['input_options']['column_selector_options_1']['col1'] | |
73 else: | |
74 c = None | |
75 | |
76 df_key = infile1 + repr(header) | |
77 df = pd.read_csv(infile1, sep='\t', header=header, | |
78 parse_dates=True) | |
79 loaded_df[df_key] = df | |
80 | |
81 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
82 # sparse input | |
83 elif input_type == 'sparse': | |
84 X = mmread(open(infile1, 'r')) | |
85 | |
86 # Get target y | |
87 header = 'infer' if params['input_options']['header2'] else None | |
88 column_option = (params['input_options']['column_selector_options_2'] | |
89 ['selected_column_selector_option2']) | |
90 if column_option in ['by_index_number', 'all_but_by_index_number', | |
91 'by_header_name', 'all_but_by_header_name']: | |
92 c = params['input_options']['column_selector_options_2']['col2'] | |
93 else: | |
94 c = None | |
95 | |
96 df_key = infile2 + repr(header) | |
97 if df_key in loaded_df: | |
98 infile2 = loaded_df[df_key] | |
99 else: | |
100 infile2 = pd.read_csv(infile2, sep='\t', | |
101 header=header, parse_dates=True) | |
102 loaded_df[df_key] = infile2 | |
103 | |
104 y = read_columns( | |
105 infile2, | |
106 c=c, | |
107 c_option=column_option, | |
108 sep='\t', | |
109 header=header, | |
110 parse_dates=True) | |
111 if len(y.shape) == 2 and y.shape[1] == 1: | |
112 y = y.ravel() | |
113 | |
114 return X, y | |
115 | |
116 | |
117 def main(inputs, infile_estimator, infile1, infile2, out_object, | |
118 out_weights=None): | |
119 """ main | |
120 | |
121 Parameters | |
122 ---------- | |
123 inputs : str | |
124 File path to galaxy tool parameter | |
125 | |
126 infile_estimator : str | |
127 File paths of input estimator | |
128 | |
129 infile1 : str | |
130 File path to dataset containing features | |
131 | |
132 infile2 : str | |
133 File path to dataset containing target labels | |
134 | |
135 out_object : str | |
136 File path for output of fitted model or skeleton | |
137 | |
138 out_weights : str | |
139 File path for output of weights | |
140 | |
141 """ | |
142 with open(inputs, 'r') as param_handler: | |
143 params = json.load(param_handler) | |
144 | |
145 # load model | |
146 with open(infile_estimator, 'rb') as est_handler: | |
147 estimator = load_model(est_handler) | |
148 estimator = clean_params(estimator, n_jobs=N_JOBS) | |
149 | |
150 X_train, y_train = _get_X_y(params, infile1, infile2) | |
151 | |
152 estimator.fit(X_train, y_train) | |
153 | |
154 main_est = estimator | |
155 if isinstance(main_est, Pipeline): | |
156 main_est = main_est.steps[-1][-1] | |
157 if hasattr(main_est, 'model_') \ | |
158 and hasattr(main_est, 'save_weights'): | |
159 if out_weights: | |
160 main_est.save_weights(out_weights) | |
161 del main_est.model_ | |
162 del main_est.fit_params | |
163 del main_est.model_class_ | |
164 del main_est.validation_data | |
165 if getattr(main_est, 'data_generator_', None): | |
166 del main_est.data_generator_ | |
167 | |
168 with open(out_object, 'wb') as output_handler: | |
169 pickle.dump(estimator, output_handler, | |
170 pickle.HIGHEST_PROTOCOL) | |
171 | |
172 | |
173 if __name__ == '__main__': | |
174 aparser = argparse.ArgumentParser() | |
175 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
176 aparser.add_argument("-X", "--infile_estimator", dest="infile_estimator") | |
177 aparser.add_argument("-y", "--infile1", dest="infile1") | |
178 aparser.add_argument("-g", "--infile2", dest="infile2") | |
179 aparser.add_argument("-o", "--out_object", dest="out_object") | |
180 aparser.add_argument("-t", "--out_weights", dest="out_weights") | |
181 args = aparser.parse_args() | |
182 | |
183 main(args.inputs, args.infile_estimator, args.infile1, | |
184 args.infile2, args.out_object, args.out_weights) |