Mercurial > repos > bgruening > sklearn_regression_metrics
comparison pca.py @ 28:0cc5098a9bff draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
| author | bgruening |
|---|---|
| date | Tue, 13 Apr 2021 19:13:15 +0000 |
| parents | 7d98dfb04d27 |
| children |
comparison
equal
deleted
inserted
replaced
| 27:7d98dfb04d27 | 28:0cc5098a9bff |
|---|---|
| 1 import argparse | 1 import argparse |
| 2 | |
| 2 import numpy as np | 3 import numpy as np |
| 3 from sklearn.decomposition import PCA, IncrementalPCA, KernelPCA | |
| 4 from galaxy_ml.utils import read_columns | 4 from galaxy_ml.utils import read_columns |
| 5 from sklearn.decomposition import IncrementalPCA, KernelPCA, PCA | |
| 6 | |
| 5 | 7 |
| 6 def main(): | 8 def main(): |
| 7 parser = argparse.ArgumentParser(description='RDKit screen') | 9 parser = argparse.ArgumentParser(description="RDKit screen") |
| 8 parser.add_argument('-i', '--infile', | 10 parser.add_argument("-i", "--infile", help="Input file") |
| 9 help="Input file") | 11 parser.add_argument( |
| 10 parser.add_argument('--header', action='store_true', help="Include the header row or skip it") | 12 "--header", action="store_true", help="Include the header row or skip it" |
| 11 parser.add_argument('-c', '--columns', type=str.lower, default='all', choices=['by_index_number', 'all_but_by_index_number',\ | 13 ) |
| 12 'by_header_name', 'all_but_by_header_name', 'all_columns'], | 14 parser.add_argument( |
| 13 help="Choose to select all columns, or exclude/include some") | 15 "-c", |
| 14 parser.add_argument('-ci', '--column_indices', type=str.lower, | 16 "--columns", |
| 15 help="Choose to select all columns, or exclude/include some") | 17 type=str.lower, |
| 16 parser.add_argument('-n', '--number', nargs='?', type=int, default=None,\ | 18 default="all", |
| 17 help="Number of components to keep. If not set, all components are kept") | 19 choices=[ |
| 18 parser.add_argument('--whiten', action='store_true', help="Whiten the components") | 20 "by_index_number", |
| 19 parser.add_argument('-t', '--pca_type', type=str.lower, default='classical', choices=['classical', 'incremental', 'kernel'], | 21 "all_but_by_index_number", |
| 20 help="Choose which flavour of PCA to use") | 22 "by_header_name", |
| 21 parser.add_argument('-s', '--svd_solver', type=str.lower, default='auto', choices=['auto', 'full', 'arpack', 'randomized'], | 23 "all_but_by_header_name", |
| 22 help="Choose the type of svd solver.") | 24 "all_columns", |
| 23 parser.add_argument('-b', '--batch_size', nargs='?', type=int, default=None,\ | 25 ], |
| 24 help="The number of samples to use for each batch") | 26 help="Choose to select all columns, or exclude/include some", |
| 25 parser.add_argument('-k', '--kernel', type=str.lower, default='linear',\ | 27 ) |
| 26 choices=['linear', 'poly', 'rbf', 'sigmoid', 'cosine', 'precomputed'], | 28 parser.add_argument( |
| 27 help="Choose the type of kernel.") | 29 "-ci", |
| 28 parser.add_argument('-g', '--gamma', nargs='?', type=float, default=None, | 30 "--column_indices", |
| 29 help='Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other kernels') | 31 type=str.lower, |
| 30 parser.add_argument('-tol', '--tolerance', type=float, default=0.0, | 32 help="Choose to select all columns, or exclude/include some", |
| 31 help='Convergence tolerance for arpack. If 0, optimal value will be chosen by arpack') | 33 ) |
| 32 parser.add_argument('-mi', '--max_iter', nargs='?', type=int, default=None,\ | 34 parser.add_argument( |
| 33 help="Maximum number of iterations for arpack") | 35 "-n", |
| 34 parser.add_argument('-d', '--degree', type=int, default=3,\ | 36 "--number", |
| 35 help="Degree for poly kernels. Ignored by other kernels") | 37 nargs="?", |
| 36 parser.add_argument('-cf', '--coef0', type=float, default=1.0, | 38 type=int, |
| 37 help='Independent term in poly and sigmoid kernels') | 39 default=None, |
| 38 parser.add_argument('-e', '--eigen_solver', type=str.lower, default='auto', choices=['auto', 'dense', 'arpack'], | 40 help="Number of components to keep. If not set, all components are kept", |
| 39 help="Choose the type of eigen solver.") | 41 ) |
| 40 parser.add_argument('-o', '--outfile', | 42 parser.add_argument("--whiten", action="store_true", help="Whiten the components") |
| 41 help="Base name for output file (no extension).") | 43 parser.add_argument( |
| 44 "-t", | |
| 45 "--pca_type", | |
| 46 type=str.lower, | |
| 47 default="classical", | |
| 48 choices=["classical", "incremental", "kernel"], | |
| 49 help="Choose which flavour of PCA to use", | |
| 50 ) | |
| 51 parser.add_argument( | |
| 52 "-s", | |
| 53 "--svd_solver", | |
| 54 type=str.lower, | |
| 55 default="auto", | |
| 56 choices=["auto", "full", "arpack", "randomized"], | |
| 57 help="Choose the type of svd solver.", | |
| 58 ) | |
| 59 parser.add_argument( | |
| 60 "-b", | |
| 61 "--batch_size", | |
| 62 nargs="?", | |
| 63 type=int, | |
| 64 default=None, | |
| 65 help="The number of samples to use for each batch", | |
| 66 ) | |
| 67 parser.add_argument( | |
| 68 "-k", | |
| 69 "--kernel", | |
| 70 type=str.lower, | |
| 71 default="linear", | |
| 72 choices=["linear", "poly", "rbf", "sigmoid", "cosine", "precomputed"], | |
| 73 help="Choose the type of kernel.", | |
| 74 ) | |
| 75 parser.add_argument( | |
| 76 "-g", | |
| 77 "--gamma", | |
| 78 nargs="?", | |
| 79 type=float, | |
| 80 default=None, | |
| 81 help="Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other kernels", | |
| 82 ) | |
| 83 parser.add_argument( | |
| 84 "-tol", | |
| 85 "--tolerance", | |
| 86 type=float, | |
| 87 default=0.0, | |
| 88 help="Convergence tolerance for arpack. If 0, optimal value will be chosen by arpack", | |
| 89 ) | |
| 90 parser.add_argument( | |
| 91 "-mi", | |
| 92 "--max_iter", | |
| 93 nargs="?", | |
| 94 type=int, | |
| 95 default=None, | |
| 96 help="Maximum number of iterations for arpack", | |
| 97 ) | |
| 98 parser.add_argument( | |
| 99 "-d", | |
| 100 "--degree", | |
| 101 type=int, | |
| 102 default=3, | |
| 103 help="Degree for poly kernels. Ignored by other kernels", | |
| 104 ) | |
| 105 parser.add_argument( | |
| 106 "-cf", | |
| 107 "--coef0", | |
| 108 type=float, | |
| 109 default=1.0, | |
| 110 help="Independent term in poly and sigmoid kernels", | |
| 111 ) | |
| 112 parser.add_argument( | |
| 113 "-e", | |
| 114 "--eigen_solver", | |
| 115 type=str.lower, | |
| 116 default="auto", | |
| 117 choices=["auto", "dense", "arpack"], | |
| 118 help="Choose the type of eigen solver.", | |
| 119 ) | |
| 120 parser.add_argument( | |
| 121 "-o", "--outfile", help="Base name for output file (no extension)." | |
| 122 ) | |
| 42 args = parser.parse_args() | 123 args = parser.parse_args() |
| 43 | 124 |
| 44 usecols = None | 125 usecols = None |
| 45 cols = [] | |
| 46 pca_params = {} | 126 pca_params = {} |
| 47 | 127 |
| 48 if args.columns == 'by_index_number' or args.columns == 'all_but_by_index_number': | 128 if args.columns == "by_index_number" or args.columns == "all_but_by_index_number": |
| 49 usecols = [int(i) for i in args.column_indices.split(',')] | 129 usecols = [int(i) for i in args.column_indices.split(",")] |
| 50 elif args.columns == 'by_header_name' or args.columns == 'all_but_by_header_name': | 130 elif args.columns == "by_header_name" or args.columns == "all_but_by_header_name": |
| 51 usecols = args.column_indices | 131 usecols = args.column_indices |
| 52 | 132 |
| 53 header = 'infer' if args.header else None | 133 header = "infer" if args.header else None |
| 54 | 134 |
| 55 pca_input = read_columns( | 135 pca_input = read_columns( |
| 56 f=args.infile, | 136 f=args.infile, |
| 57 c=usecols, | 137 c=usecols, |
| 58 c_option=args.columns, | 138 c_option=args.columns, |
| 59 sep='\t', | 139 sep="\t", |
| 60 header=header, | 140 header=header, |
| 61 parse_dates=True, | 141 parse_dates=True, |
| 62 encoding=None, | 142 encoding=None, |
| 63 index_col=None) | 143 index_col=None, |
| 144 ) | |
| 64 | 145 |
| 65 pca_params.update({'n_components': args.number}) | 146 pca_params.update({"n_components": args.number}) |
| 66 | 147 |
| 67 if args.pca_type == 'classical': | 148 if args.pca_type == "classical": |
| 68 pca_params.update({'svd_solver': args.svd_solver, 'whiten': args.whiten}) | 149 pca_params.update({"svd_solver": args.svd_solver, "whiten": args.whiten}) |
| 69 if args.svd_solver == 'arpack': | 150 if args.svd_solver == "arpack": |
| 70 pca_params.update({'tol': args.tolerance}) | 151 pca_params.update({"tol": args.tolerance}) |
| 71 pca = PCA() | 152 pca = PCA() |
| 72 | 153 |
| 73 elif args.pca_type == 'incremental': | 154 elif args.pca_type == "incremental": |
| 74 pca_params.update({'batch_size': args.batch_size, 'whiten': args.whiten}) | 155 pca_params.update({"batch_size": args.batch_size, "whiten": args.whiten}) |
| 75 pca = IncrementalPCA() | 156 pca = IncrementalPCA() |
| 76 | 157 |
| 77 elif args.pca_type == 'kernel': | 158 elif args.pca_type == "kernel": |
| 78 pca_params.update({'kernel': args.kernel, 'eigen_solver': args.eigen_solver, 'gamma': args.gamma}) | 159 pca_params.update( |
| 160 { | |
| 161 "kernel": args.kernel, | |
| 162 "eigen_solver": args.eigen_solver, | |
| 163 "gamma": args.gamma, | |
| 164 } | |
| 165 ) | |
| 79 | 166 |
| 80 if args.kernel == 'poly': | 167 if args.kernel == "poly": |
| 81 pca_params.update({'degree': args.degree, 'coef0': args.coef0}) | 168 pca_params.update({"degree": args.degree, "coef0": args.coef0}) |
| 82 elif args.kernel == 'sigmoid': | 169 elif args.kernel == "sigmoid": |
| 83 pca_params.update({'coef0': args.coef0}) | 170 pca_params.update({"coef0": args.coef0}) |
| 84 elif args.kernel == 'precomputed': | 171 elif args.kernel == "precomputed": |
| 85 pca_input = np.dot(pca_input, pca_input.T) | 172 pca_input = np.dot(pca_input, pca_input.T) |
| 86 | 173 |
| 87 if args.eigen_solver == 'arpack': | 174 if args.eigen_solver == "arpack": |
| 88 pca_params.update({'tol': args.tolerance, 'max_iter': args.max_iter}) | 175 pca_params.update({"tol": args.tolerance, "max_iter": args.max_iter}) |
| 89 | 176 |
| 90 pca = KernelPCA() | 177 pca = KernelPCA() |
| 91 | 178 |
| 92 print(pca_params) | 179 print(pca_params) |
| 93 pca.set_params(**pca_params) | 180 pca.set_params(**pca_params) |
| 94 pca_output = pca.fit_transform(pca_input) | 181 pca_output = pca.fit_transform(pca_input) |
| 95 np.savetxt(fname=args.outfile, X=pca_output, fmt='%.4f', delimiter='\t') | 182 np.savetxt(fname=args.outfile, X=pca_output, fmt="%.4f", delimiter="\t") |
| 96 | 183 |
| 97 | 184 |
| 98 if __name__ == "__main__": | 185 if __name__ == "__main__": |
| 99 main() | 186 main() |
