Mercurial > repos > bgruening > sklearn_sample_generator
diff keras_deep_learning.py @ 27:52ea044c667f draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ba6a47bdf76bbf4cb276206ac1a8cbf61332fd16"
author | bgruening |
---|---|
date | Fri, 13 Sep 2019 12:11:31 -0400 |
parents | ebf295f2faf6 |
children | df579b31311d |
line wrap: on
line diff
--- a/keras_deep_learning.py Fri Aug 09 07:20:20 2019 -0400 +++ b/keras_deep_learning.py Fri Sep 13 12:11:31 2019 -0400 @@ -8,7 +8,10 @@ from ast import literal_eval from keras.models import Sequential, Model -from galaxy_ml.utils import try_get_attr, get_search_params +from galaxy_ml.utils import try_get_attr, get_search_params, SafeEval + + +safe_eval = SafeEval() def _handle_shape(literal): @@ -100,13 +103,14 @@ if key in ['input_shape', 'noise_shape', 'shape', 'batch_shape', 'target_shape', 'dims', 'kernel_size', 'strides', 'dilation_rate', 'output_padding', 'cropping', 'size', - 'padding', 'pool_size', 'axis', 'shared_axes']: + 'padding', 'pool_size', 'axis', 'shared_axes'] \ + and isinstance(value, str): params[key] = _handle_shape(value) - elif key.endswith('_regularizer'): + elif key.endswith('_regularizer') and isinstance(value, dict): params[key] = _handle_regularizer(value) - elif key.endswith('_constraint'): + elif key.endswith('_constraint') and isinstance(value, dict): params[key] = _handle_constraint(value) elif key == 'function': # No support for lambda/function eval @@ -129,12 +133,15 @@ options = layer['layer_selection'] layer_type = options.pop('layer_type') klass = getattr(keras.layers, layer_type) - other_options = options.pop('layer_options', {}) - options.update(other_options) + kwargs = options.pop('kwargs', '') # parameters needs special care options = _handle_layer_parameters(options) + if kwargs: + kwargs = safe_eval('dict(' + kwargs + ')') + options.update(kwargs) + # add input_shape to the first layer only if not getattr(model, '_layers') and input_shape is not None: options['input_shape'] = input_shape @@ -158,11 +165,15 @@ layer_type = options.pop('layer_type') klass = getattr(keras.layers, layer_type) inbound_nodes = options.pop('inbound_nodes', None) - other_options = options.pop('layer_options', {}) - options.update(other_options) + kwargs = options.pop('kwargs', '') # parameters needs special care options = _handle_layer_parameters(options) + + if kwargs: + kwargs = safe_eval('dict(' + kwargs + ')') + options.update(kwargs) + # merge layers if 'merging_layers' in options: idxs = literal_eval(options.pop('merging_layers'))