Mercurial > repos > bgruening > sklearn_sample_generator
diff test-data/get_params04.tabular @ 24:97b467e06354 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit c0a3a186966888e5787335a7628bf0a4382637e7
author | bgruening |
---|---|
date | Tue, 14 May 2019 18:07:39 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/get_params04.tabular Tue May 14 18:07:39 2019 -0400 @@ -0,0 +1,39 @@ + Parameter Value +* memory memory: None +* steps "steps: [('selectfrommodel', SelectFromModel(estimator=AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, + learning_rate=1.0, n_estimators=50, random_state=None), + max_features=None, norm_order=1, prefit=False, threshold=None)), ('linearsvc', LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, + intercept_scaling=1, loss='squared_hinge', max_iter=1000, + multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, + verbose=0))]" +@ selectfrommodel "selectfrommodel: SelectFromModel(estimator=AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, + learning_rate=1.0, n_estimators=50, random_state=None), + max_features=None, norm_order=1, prefit=False, threshold=None)" +@ linearsvc "linearsvc: LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, + intercept_scaling=1, loss='squared_hinge', max_iter=1000, + multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, + verbose=0)" +@ selectfrommodel__estimator__algorithm selectfrommodel__estimator__algorithm: 'SAMME.R' +@ selectfrommodel__estimator__base_estimator selectfrommodel__estimator__base_estimator: None +@ selectfrommodel__estimator__learning_rate selectfrommodel__estimator__learning_rate: 1.0 +@ selectfrommodel__estimator__n_estimators selectfrommodel__estimator__n_estimators: 50 +@ selectfrommodel__estimator__random_state selectfrommodel__estimator__random_state: None +@ selectfrommodel__estimator "selectfrommodel__estimator: AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, + learning_rate=1.0, n_estimators=50, random_state=None)" +@ selectfrommodel__max_features selectfrommodel__max_features: None +@ selectfrommodel__norm_order selectfrommodel__norm_order: 1 +@ selectfrommodel__prefit selectfrommodel__prefit: False +@ selectfrommodel__threshold selectfrommodel__threshold: None +@ linearsvc__C linearsvc__C: 1.0 +@ linearsvc__class_weight linearsvc__class_weight: None +@ linearsvc__dual linearsvc__dual: True +@ linearsvc__fit_intercept linearsvc__fit_intercept: True +@ linearsvc__intercept_scaling linearsvc__intercept_scaling: 1 +@ linearsvc__loss linearsvc__loss: 'squared_hinge' +@ linearsvc__max_iter linearsvc__max_iter: 1000 +@ linearsvc__multi_class linearsvc__multi_class: 'ovr' +@ linearsvc__penalty linearsvc__penalty: 'l2' +@ linearsvc__random_state linearsvc__random_state: None +@ linearsvc__tol linearsvc__tol: 0.0001 +* linearsvc__verbose linearsvc__verbose: 0 + Note: @, searchable params in searchcv too.