Mercurial > repos > bgruening > sklearn_svm_classifier
comparison train_test_eval.py @ 19:d67dcd63f6cb draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 17:32:55 +0000 |
parents | 2df8f5c30edc |
children | a5665e1b06b0 |
comparison
equal
deleted
inserted
replaced
18:02d2be90dedb | 19:d67dcd63f6cb |
---|---|
1 import argparse | 1 import argparse |
2 import joblib | |
3 import json | 2 import json |
4 import numpy as np | |
5 import os | 3 import os |
6 import pandas as pd | |
7 import pickle | 4 import pickle |
8 import warnings | 5 import warnings |
6 | |
9 from itertools import chain | 7 from itertools import chain |
8 | |
9 import joblib | |
10 import numpy as np | |
11 import pandas as pd | |
12 from galaxy_ml.model_validations import train_test_split | |
13 from galaxy_ml.utils import ( | |
14 get_module, | |
15 get_scoring, | |
16 load_model, | |
17 read_columns, | |
18 SafeEval, | |
19 try_get_attr, | |
20 ) | |
10 from scipy.io import mmread | 21 from scipy.io import mmread |
11 from sklearn.base import clone | 22 from sklearn import pipeline |
12 from sklearn import (cluster, compose, decomposition, ensemble, | |
13 feature_extraction, feature_selection, | |
14 gaussian_process, kernel_approximation, metrics, | |
15 model_selection, naive_bayes, neighbors, | |
16 pipeline, preprocessing, svm, linear_model, | |
17 tree, discriminant_analysis) | |
18 from sklearn.exceptions import FitFailedWarning | |
19 from sklearn.metrics.scorer import _check_multimetric_scoring | 23 from sklearn.metrics.scorer import _check_multimetric_scoring |
20 from sklearn.model_selection._validation import _score, cross_validate | 24 from sklearn.model_selection._validation import _score |
21 from sklearn.model_selection import _search, _validation | 25 from sklearn.model_selection import _search, _validation |
26 from sklearn.model_selection._validation import _score | |
22 from sklearn.utils import indexable, safe_indexing | 27 from sklearn.utils import indexable, safe_indexing |
23 | 28 |
24 from galaxy_ml.model_validations import train_test_split | 29 |
25 from galaxy_ml.utils import (SafeEval, get_scoring, load_model, | 30 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") |
26 read_columns, try_get_attr, get_module) | 31 setattr(_search, "_fit_and_score", _fit_and_score) |
27 | 32 setattr(_validation, "_fit_and_score", _fit_and_score) |
28 | 33 |
29 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | 34 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) |
30 setattr(_search, '_fit_and_score', _fit_and_score) | 35 CACHE_DIR = os.path.join(os.getcwd(), "cached") |
31 setattr(_validation, '_fit_and_score', _fit_and_score) | |
32 | |
33 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) | |
34 CACHE_DIR = os.path.join(os.getcwd(), 'cached') | |
35 del os | 36 del os |
36 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | 37 NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") |
37 'nthread', 'callbacks') | 38 ALLOWED_CALLBACKS = ( |
38 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | 39 "EarlyStopping", |
39 'CSVLogger', 'None') | 40 "TerminateOnNaN", |
41 "ReduceLROnPlateau", | |
42 "CSVLogger", | |
43 "None", | |
44 ) | |
40 | 45 |
41 | 46 |
42 def _eval_swap_params(params_builder): | 47 def _eval_swap_params(params_builder): |
43 swap_params = {} | 48 swap_params = {} |
44 | 49 |
45 for p in params_builder['param_set']: | 50 for p in params_builder["param_set"]: |
46 swap_value = p['sp_value'].strip() | 51 swap_value = p["sp_value"].strip() |
47 if swap_value == '': | 52 if swap_value == "": |
48 continue | 53 continue |
49 | 54 |
50 param_name = p['sp_name'] | 55 param_name = p["sp_name"] |
51 if param_name.lower().endswith(NON_SEARCHABLE): | 56 if param_name.lower().endswith(NON_SEARCHABLE): |
52 warnings.warn("Warning: `%s` is not eligible for search and was " | 57 warnings.warn( |
53 "omitted!" % param_name) | 58 "Warning: `%s` is not eligible for search and was " |
59 "omitted!" % param_name | |
60 ) | |
54 continue | 61 continue |
55 | 62 |
56 if not swap_value.startswith(':'): | 63 if not swap_value.startswith(":"): |
57 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | 64 safe_eval = SafeEval(load_scipy=True, load_numpy=True) |
58 ev = safe_eval(swap_value) | 65 ev = safe_eval(swap_value) |
59 else: | 66 else: |
60 # Have `:` before search list, asks for estimator evaluatio | 67 # Have `:` before search list, asks for estimator evaluatio |
61 safe_eval_es = SafeEval(load_estimators=True) | 68 safe_eval_es = SafeEval(load_estimators=True) |
78 if arr is None: | 85 if arr is None: |
79 nones.append(idx) | 86 nones.append(idx) |
80 else: | 87 else: |
81 new_arrays.append(arr) | 88 new_arrays.append(arr) |
82 | 89 |
83 if kwargs['shuffle'] == 'None': | 90 if kwargs["shuffle"] == "None": |
84 kwargs['shuffle'] = None | 91 kwargs["shuffle"] = None |
85 | 92 |
86 group_names = kwargs.pop('group_names', None) | 93 group_names = kwargs.pop("group_names", None) |
87 | 94 |
88 if group_names is not None and group_names.strip(): | 95 if group_names is not None and group_names.strip(): |
89 group_names = [name.strip() for name in | 96 group_names = [name.strip() for name in group_names.split(",")] |
90 group_names.split(',')] | |
91 new_arrays = indexable(*new_arrays) | 97 new_arrays = indexable(*new_arrays) |
92 groups = kwargs['labels'] | 98 groups = kwargs["labels"] |
93 n_samples = new_arrays[0].shape[0] | 99 n_samples = new_arrays[0].shape[0] |
94 index_arr = np.arange(n_samples) | 100 index_arr = np.arange(n_samples) |
95 test = index_arr[np.isin(groups, group_names)] | 101 test = index_arr[np.isin(groups, group_names)] |
96 train = index_arr[~np.isin(groups, group_names)] | 102 train = index_arr[~np.isin(groups, group_names)] |
97 rval = list(chain.from_iterable( | 103 rval = list( |
98 (safe_indexing(a, train), | 104 chain.from_iterable( |
99 safe_indexing(a, test)) for a in new_arrays)) | 105 (safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays |
106 ) | |
107 ) | |
100 else: | 108 else: |
101 rval = train_test_split(*new_arrays, **kwargs) | 109 rval = train_test_split(*new_arrays, **kwargs) |
102 | 110 |
103 for pos in nones: | 111 for pos in nones: |
104 rval[pos * 2: 2] = [None, None] | 112 rval[pos * 2: 2] = [None, None] |
105 | 113 |
106 return rval | 114 return rval |
107 | 115 |
108 | 116 |
109 def main(inputs, infile_estimator, infile1, infile2, | 117 def main( |
110 outfile_result, outfile_object=None, | 118 inputs, |
111 outfile_weights=None, groups=None, | 119 infile_estimator, |
112 ref_seq=None, intervals=None, targets=None, | 120 infile1, |
113 fasta_path=None): | 121 infile2, |
122 outfile_result, | |
123 outfile_object=None, | |
124 outfile_weights=None, | |
125 groups=None, | |
126 ref_seq=None, | |
127 intervals=None, | |
128 targets=None, | |
129 fasta_path=None, | |
130 ): | |
114 """ | 131 """ |
115 Parameter | 132 Parameter |
116 --------- | 133 --------- |
117 inputs : str | 134 inputs : str |
118 File path to galaxy tool parameter | 135 File path to galaxy tool parameter |
148 File path to dataset compressed target bed file | 165 File path to dataset compressed target bed file |
149 | 166 |
150 fasta_path : str | 167 fasta_path : str |
151 File path to dataset containing fasta file | 168 File path to dataset containing fasta file |
152 """ | 169 """ |
153 warnings.simplefilter('ignore') | 170 warnings.simplefilter("ignore") |
154 | 171 |
155 with open(inputs, 'r') as param_handler: | 172 with open(inputs, "r") as param_handler: |
156 params = json.load(param_handler) | 173 params = json.load(param_handler) |
157 | 174 |
158 # load estimator | 175 # load estimator |
159 with open(infile_estimator, 'rb') as estimator_handler: | 176 with open(infile_estimator, "rb") as estimator_handler: |
160 estimator = load_model(estimator_handler) | 177 estimator = load_model(estimator_handler) |
161 | 178 |
162 # swap hyperparameter | 179 # swap hyperparameter |
163 swapping = params['experiment_schemes']['hyperparams_swapping'] | 180 swapping = params["experiment_schemes"]["hyperparams_swapping"] |
164 swap_params = _eval_swap_params(swapping) | 181 swap_params = _eval_swap_params(swapping) |
165 estimator.set_params(**swap_params) | 182 estimator.set_params(**swap_params) |
166 | 183 |
167 estimator_params = estimator.get_params() | 184 estimator_params = estimator.get_params() |
168 | 185 |
169 # store read dataframe object | 186 # store read dataframe object |
170 loaded_df = {} | 187 loaded_df = {} |
171 | 188 |
172 input_type = params['input_options']['selected_input'] | 189 input_type = params["input_options"]["selected_input"] |
173 # tabular input | 190 # tabular input |
174 if input_type == 'tabular': | 191 if input_type == "tabular": |
175 header = 'infer' if params['input_options']['header1'] else None | 192 header = "infer" if params["input_options"]["header1"] else None |
176 column_option = (params['input_options']['column_selector_options_1'] | 193 column_option = params["input_options"]["column_selector_options_1"][ |
177 ['selected_column_selector_option']) | 194 "selected_column_selector_option" |
178 if column_option in ['by_index_number', 'all_but_by_index_number', | 195 ] |
179 'by_header_name', 'all_but_by_header_name']: | 196 if column_option in [ |
180 c = params['input_options']['column_selector_options_1']['col1'] | 197 "by_index_number", |
198 "all_but_by_index_number", | |
199 "by_header_name", | |
200 "all_but_by_header_name", | |
201 ]: | |
202 c = params["input_options"]["column_selector_options_1"]["col1"] | |
181 else: | 203 else: |
182 c = None | 204 c = None |
183 | 205 |
184 df_key = infile1 + repr(header) | 206 df_key = infile1 + repr(header) |
185 df = pd.read_csv(infile1, sep='\t', header=header, | 207 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) |
186 parse_dates=True) | |
187 loaded_df[df_key] = df | 208 loaded_df[df_key] = df |
188 | 209 |
189 X = read_columns(df, c=c, c_option=column_option).astype(float) | 210 X = read_columns(df, c=c, c_option=column_option).astype(float) |
190 # sparse input | 211 # sparse input |
191 elif input_type == 'sparse': | 212 elif input_type == "sparse": |
192 X = mmread(open(infile1, 'r')) | 213 X = mmread(open(infile1, "r")) |
193 | 214 |
194 # fasta_file input | 215 # fasta_file input |
195 elif input_type == 'seq_fasta': | 216 elif input_type == "seq_fasta": |
196 pyfaidx = get_module('pyfaidx') | 217 pyfaidx = get_module("pyfaidx") |
197 sequences = pyfaidx.Fasta(fasta_path) | 218 sequences = pyfaidx.Fasta(fasta_path) |
198 n_seqs = len(sequences.keys()) | 219 n_seqs = len(sequences.keys()) |
199 X = np.arange(n_seqs)[:, np.newaxis] | 220 X = np.arange(n_seqs)[:, np.newaxis] |
200 for param in estimator_params.keys(): | 221 for param in estimator_params.keys(): |
201 if param.endswith('fasta_path'): | 222 if param.endswith("fasta_path"): |
202 estimator.set_params( | 223 estimator.set_params(**{param: fasta_path}) |
203 **{param: fasta_path}) | |
204 break | 224 break |
205 else: | 225 else: |
206 raise ValueError( | 226 raise ValueError( |
207 "The selected estimator doesn't support " | 227 "The selected estimator doesn't support " |
208 "fasta file input! Please consider using " | 228 "fasta file input! Please consider using " |
209 "KerasGBatchClassifier with " | 229 "KerasGBatchClassifier with " |
210 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | 230 "FastaDNABatchGenerator/FastaProteinBatchGenerator " |
211 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | 231 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " |
212 "in pipeline!") | 232 "in pipeline!" |
213 | 233 ) |
214 elif input_type == 'refseq_and_interval': | 234 |
235 elif input_type == "refseq_and_interval": | |
215 path_params = { | 236 path_params = { |
216 'data_batch_generator__ref_genome_path': ref_seq, | 237 "data_batch_generator__ref_genome_path": ref_seq, |
217 'data_batch_generator__intervals_path': intervals, | 238 "data_batch_generator__intervals_path": intervals, |
218 'data_batch_generator__target_path': targets | 239 "data_batch_generator__target_path": targets, |
219 } | 240 } |
220 estimator.set_params(**path_params) | 241 estimator.set_params(**path_params) |
221 n_intervals = sum(1 for line in open(intervals)) | 242 n_intervals = sum(1 for line in open(intervals)) |
222 X = np.arange(n_intervals)[:, np.newaxis] | 243 X = np.arange(n_intervals)[:, np.newaxis] |
223 | 244 |
224 # Get target y | 245 # Get target y |
225 header = 'infer' if params['input_options']['header2'] else None | 246 header = "infer" if params["input_options"]["header2"] else None |
226 column_option = (params['input_options']['column_selector_options_2'] | 247 column_option = params["input_options"]["column_selector_options_2"][ |
227 ['selected_column_selector_option2']) | 248 "selected_column_selector_option2" |
228 if column_option in ['by_index_number', 'all_but_by_index_number', | 249 ] |
229 'by_header_name', 'all_but_by_header_name']: | 250 if column_option in [ |
230 c = params['input_options']['column_selector_options_2']['col2'] | 251 "by_index_number", |
252 "all_but_by_index_number", | |
253 "by_header_name", | |
254 "all_but_by_header_name", | |
255 ]: | |
256 c = params["input_options"]["column_selector_options_2"]["col2"] | |
231 else: | 257 else: |
232 c = None | 258 c = None |
233 | 259 |
234 df_key = infile2 + repr(header) | 260 df_key = infile2 + repr(header) |
235 if df_key in loaded_df: | 261 if df_key in loaded_df: |
236 infile2 = loaded_df[df_key] | 262 infile2 = loaded_df[df_key] |
237 else: | 263 else: |
238 infile2 = pd.read_csv(infile2, sep='\t', | 264 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) |
239 header=header, parse_dates=True) | |
240 loaded_df[df_key] = infile2 | 265 loaded_df[df_key] = infile2 |
241 | 266 |
242 y = read_columns( | 267 y = read_columns(infile2, |
243 infile2, | 268 c=c, |
244 c=c, | 269 c_option=column_option, |
245 c_option=column_option, | 270 sep='\t', |
246 sep='\t', | 271 header=header, |
247 header=header, | 272 parse_dates=True) |
248 parse_dates=True) | |
249 if len(y.shape) == 2 and y.shape[1] == 1: | 273 if len(y.shape) == 2 and y.shape[1] == 1: |
250 y = y.ravel() | 274 y = y.ravel() |
251 if input_type == 'refseq_and_interval': | 275 if input_type == "refseq_and_interval": |
252 estimator.set_params( | 276 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) |
253 data_batch_generator__features=y.ravel().tolist()) | |
254 y = None | 277 y = None |
255 # end y | 278 # end y |
256 | 279 |
257 # load groups | 280 # load groups |
258 if groups: | 281 if groups: |
259 groups_selector = (params['experiment_schemes']['test_split'] | 282 groups_selector = ( |
260 ['split_algos']).pop('groups_selector') | 283 params["experiment_schemes"]["test_split"]["split_algos"] |
261 | 284 ).pop("groups_selector") |
262 header = 'infer' if groups_selector['header_g'] else None | 285 |
263 column_option = \ | 286 header = "infer" if groups_selector["header_g"] else None |
264 (groups_selector['column_selector_options_g'] | 287 column_option = groups_selector["column_selector_options_g"][ |
265 ['selected_column_selector_option_g']) | 288 "selected_column_selector_option_g" |
266 if column_option in ['by_index_number', 'all_but_by_index_number', | 289 ] |
267 'by_header_name', 'all_but_by_header_name']: | 290 if column_option in [ |
268 c = groups_selector['column_selector_options_g']['col_g'] | 291 "by_index_number", |
292 "all_but_by_index_number", | |
293 "by_header_name", | |
294 "all_but_by_header_name", | |
295 ]: | |
296 c = groups_selector["column_selector_options_g"]["col_g"] | |
269 else: | 297 else: |
270 c = None | 298 c = None |
271 | 299 |
272 df_key = groups + repr(header) | 300 df_key = groups + repr(header) |
273 if df_key in loaded_df: | 301 if df_key in loaded_df: |
274 groups = loaded_df[df_key] | 302 groups = loaded_df[df_key] |
275 | 303 |
276 groups = read_columns( | 304 groups = read_columns(groups, |
277 groups, | 305 c=c, |
278 c=c, | 306 c_option=column_option, |
279 c_option=column_option, | 307 sep='\t', |
280 sep='\t', | 308 header=header, |
281 header=header, | 309 parse_dates=True) |
282 parse_dates=True) | |
283 groups = groups.ravel() | 310 groups = groups.ravel() |
284 | 311 |
285 # del loaded_df | 312 # del loaded_df |
286 del loaded_df | 313 del loaded_df |
287 | 314 |
288 # handle memory | 315 # handle memory |
289 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | 316 memory = joblib.Memory(location=CACHE_DIR, verbose=0) |
290 # cache iraps_core fits could increase search speed significantly | 317 # cache iraps_core fits could increase search speed significantly |
291 if estimator.__class__.__name__ == 'IRAPSClassifier': | 318 if estimator.__class__.__name__ == "IRAPSClassifier": |
292 estimator.set_params(memory=memory) | 319 estimator.set_params(memory=memory) |
293 else: | 320 else: |
294 # For iraps buried in pipeline | 321 # For iraps buried in pipeline |
295 new_params = {} | 322 new_params = {} |
296 for p, v in estimator_params.items(): | 323 for p, v in estimator_params.items(): |
297 if p.endswith('memory'): | 324 if p.endswith("memory"): |
298 # for case of `__irapsclassifier__memory` | 325 # for case of `__irapsclassifier__memory` |
299 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | 326 if len(p) > 8 and p[:-8].endswith("irapsclassifier"): |
300 # cache iraps_core fits could increase search | 327 # cache iraps_core fits could increase search |
301 # speed significantly | 328 # speed significantly |
302 new_params[p] = memory | 329 new_params[p] = memory |
303 # security reason, we don't want memory being | 330 # security reason, we don't want memory being |
304 # modified unexpectedly | 331 # modified unexpectedly |
305 elif v: | 332 elif v: |
306 new_params[p] = None | 333 new_params[p] = None |
307 # handle n_jobs | 334 # handle n_jobs |
308 elif p.endswith('n_jobs'): | 335 elif p.endswith("n_jobs"): |
309 # For now, 1 CPU is suggested for iprasclassifier | 336 # For now, 1 CPU is suggested for iprasclassifier |
310 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | 337 if len(p) > 8 and p[:-8].endswith("irapsclassifier"): |
311 new_params[p] = 1 | 338 new_params[p] = 1 |
312 else: | 339 else: |
313 new_params[p] = N_JOBS | 340 new_params[p] = N_JOBS |
314 # for security reason, types of callback are limited | 341 # for security reason, types of callback are limited |
315 elif p.endswith('callbacks'): | 342 elif p.endswith("callbacks"): |
316 for cb in v: | 343 for cb in v: |
317 cb_type = cb['callback_selection']['callback_type'] | 344 cb_type = cb["callback_selection"]["callback_type"] |
318 if cb_type not in ALLOWED_CALLBACKS: | 345 if cb_type not in ALLOWED_CALLBACKS: |
319 raise ValueError( | 346 raise ValueError("Prohibited callback type: %s!" % cb_type) |
320 "Prohibited callback type: %s!" % cb_type) | |
321 | 347 |
322 estimator.set_params(**new_params) | 348 estimator.set_params(**new_params) |
323 | 349 |
324 # handle scorer, convert to scorer dict | 350 # handle scorer, convert to scorer dict |
325 scoring = params['experiment_schemes']['metrics']['scoring'] | 351 # Check if scoring is specified |
352 scoring = params["experiment_schemes"]["metrics"].get("scoring", None) | |
353 if scoring is not None: | |
354 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) | |
355 # Check if secondary_scoring is specified | |
356 secondary_scoring = scoring.get("secondary_scoring", None) | |
357 if secondary_scoring is not None: | |
358 # If secondary_scoring is specified, convert the list into comman separated string | |
359 scoring["secondary_scoring"] = ",".join(scoring["secondary_scoring"]) | |
326 scorer = get_scoring(scoring) | 360 scorer = get_scoring(scoring) |
327 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | 361 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) |
328 | 362 |
329 # handle test (first) split | 363 # handle test (first) split |
330 test_split_options = (params['experiment_schemes'] | 364 test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] |
331 ['test_split']['split_algos']) | 365 |
332 | 366 if test_split_options["shuffle"] == "group": |
333 if test_split_options['shuffle'] == 'group': | 367 test_split_options["labels"] = groups |
334 test_split_options['labels'] = groups | 368 if test_split_options["shuffle"] == "stratified": |
335 if test_split_options['shuffle'] == 'stratified': | |
336 if y is not None: | 369 if y is not None: |
337 test_split_options['labels'] = y | 370 test_split_options["labels"] = y |
338 else: | 371 else: |
339 raise ValueError("Stratified shuffle split is not " | 372 raise ValueError( |
340 "applicable on empty target values!") | 373 "Stratified shuffle split is not " "applicable on empty target values!" |
341 | 374 ) |
342 X_train, X_test, y_train, y_test, groups_train, groups_test = \ | 375 |
343 train_test_split_none(X, y, groups, **test_split_options) | 376 X_train, X_test, y_train, y_test, groups_train, _groups_test = train_test_split_none( |
344 | 377 X, y, groups, **test_split_options |
345 exp_scheme = params['experiment_schemes']['selected_exp_scheme'] | 378 ) |
379 | |
380 exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] | |
346 | 381 |
347 # handle validation (second) split | 382 # handle validation (second) split |
348 if exp_scheme == 'train_val_test': | 383 if exp_scheme == "train_val_test": |
349 val_split_options = (params['experiment_schemes'] | 384 val_split_options = params["experiment_schemes"]["val_split"]["split_algos"] |
350 ['val_split']['split_algos']) | 385 |
351 | 386 if val_split_options["shuffle"] == "group": |
352 if val_split_options['shuffle'] == 'group': | 387 val_split_options["labels"] = groups_train |
353 val_split_options['labels'] = groups_train | 388 if val_split_options["shuffle"] == "stratified": |
354 if val_split_options['shuffle'] == 'stratified': | |
355 if y_train is not None: | 389 if y_train is not None: |
356 val_split_options['labels'] = y_train | 390 val_split_options["labels"] = y_train |
357 else: | 391 else: |
358 raise ValueError("Stratified shuffle split is not " | 392 raise ValueError( |
359 "applicable on empty target values!") | 393 "Stratified shuffle split is not " |
360 | 394 "applicable on empty target values!" |
361 X_train, X_val, y_train, y_val, groups_train, groups_val = \ | 395 ) |
362 train_test_split_none(X_train, y_train, groups_train, | 396 |
363 **val_split_options) | 397 ( |
398 X_train, | |
399 X_val, | |
400 y_train, | |
401 y_val, | |
402 groups_train, | |
403 _groups_val, | |
404 ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) | |
364 | 405 |
365 # train and eval | 406 # train and eval |
366 if hasattr(estimator, 'validation_data'): | 407 if hasattr(estimator, "validation_data"): |
367 if exp_scheme == 'train_val_test': | 408 if exp_scheme == "train_val_test": |
368 estimator.fit(X_train, y_train, | 409 estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) |
369 validation_data=(X_val, y_val)) | 410 else: |
370 else: | 411 estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) |
371 estimator.fit(X_train, y_train, | |
372 validation_data=(X_test, y_test)) | |
373 else: | 412 else: |
374 estimator.fit(X_train, y_train) | 413 estimator.fit(X_train, y_train) |
375 | 414 |
376 if hasattr(estimator, 'evaluate'): | 415 if hasattr(estimator, "evaluate"): |
377 scores = estimator.evaluate(X_test, y_test=y_test, | 416 scores = estimator.evaluate( |
378 scorer=scorer, | 417 X_test, y_test=y_test, scorer=scorer, is_multimetric=True |
379 is_multimetric=True) | 418 ) |
380 else: | 419 else: |
381 scores = _score(estimator, X_test, y_test, scorer, | 420 scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) |
382 is_multimetric=True) | |
383 # handle output | 421 # handle output |
384 for name, score in scores.items(): | 422 for name, score in scores.items(): |
385 scores[name] = [score] | 423 scores[name] = [score] |
386 df = pd.DataFrame(scores) | 424 df = pd.DataFrame(scores) |
387 df = df[sorted(df.columns)] | 425 df = df[sorted(df.columns)] |
388 df.to_csv(path_or_buf=outfile_result, sep='\t', | 426 df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) |
389 header=True, index=False) | |
390 | 427 |
391 memory.clear(warn=False) | 428 memory.clear(warn=False) |
392 | 429 |
393 if outfile_object: | 430 if outfile_object: |
394 main_est = estimator | 431 main_est = estimator |
395 if isinstance(estimator, pipeline.Pipeline): | 432 if isinstance(estimator, pipeline.Pipeline): |
396 main_est = estimator.steps[-1][-1] | 433 main_est = estimator.steps[-1][-1] |
397 | 434 |
398 if hasattr(main_est, 'model_') \ | 435 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): |
399 and hasattr(main_est, 'save_weights'): | |
400 if outfile_weights: | 436 if outfile_weights: |
401 main_est.save_weights(outfile_weights) | 437 main_est.save_weights(outfile_weights) |
402 del main_est.model_ | 438 if getattr(main_est, "model_", None): |
403 del main_est.fit_params | 439 del main_est.model_ |
404 del main_est.model_class_ | 440 if getattr(main_est, "fit_params", None): |
405 del main_est.validation_data | 441 del main_est.fit_params |
406 if getattr(main_est, 'data_generator_', None): | 442 if getattr(main_est, "model_class_", None): |
443 del main_est.model_class_ | |
444 if getattr(main_est, "validation_data", None): | |
445 del main_est.validation_data | |
446 if getattr(main_est, "data_generator_", None): | |
407 del main_est.data_generator_ | 447 del main_est.data_generator_ |
408 | 448 |
409 with open(outfile_object, 'wb') as output_handler: | 449 with open(outfile_object, "wb") as output_handler: |
410 pickle.dump(estimator, output_handler, | 450 pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL) |
411 pickle.HIGHEST_PROTOCOL) | 451 |
412 | 452 |
413 | 453 if __name__ == "__main__": |
414 if __name__ == '__main__': | |
415 aparser = argparse.ArgumentParser() | 454 aparser = argparse.ArgumentParser() |
416 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 455 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |
417 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | 456 aparser.add_argument("-e", "--estimator", dest="infile_estimator") |
418 aparser.add_argument("-X", "--infile1", dest="infile1") | 457 aparser.add_argument("-X", "--infile1", dest="infile1") |
419 aparser.add_argument("-y", "--infile2", dest="infile2") | 458 aparser.add_argument("-y", "--infile2", dest="infile2") |
425 aparser.add_argument("-b", "--intervals", dest="intervals") | 464 aparser.add_argument("-b", "--intervals", dest="intervals") |
426 aparser.add_argument("-t", "--targets", dest="targets") | 465 aparser.add_argument("-t", "--targets", dest="targets") |
427 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | 466 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") |
428 args = aparser.parse_args() | 467 args = aparser.parse_args() |
429 | 468 |
430 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | 469 main( |
431 args.outfile_result, outfile_object=args.outfile_object, | 470 args.inputs, |
432 outfile_weights=args.outfile_weights, groups=args.groups, | 471 args.infile_estimator, |
433 ref_seq=args.ref_seq, intervals=args.intervals, | 472 args.infile1, |
434 targets=args.targets, fasta_path=args.fasta_path) | 473 args.infile2, |
474 args.outfile_result, | |
475 outfile_object=args.outfile_object, | |
476 outfile_weights=args.outfile_weights, | |
477 groups=args.groups, | |
478 ref_seq=args.ref_seq, | |
479 intervals=args.intervals, | |
480 targets=args.targets, | |
481 fasta_path=args.fasta_path, | |
482 ) |