Mercurial > repos > bgruening > sklearn_svm_classifier
diff stacking_ensembles.py @ 21:14fa42b095c4 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 01:53:41 +0000 |
parents | a5665e1b06b0 |
children | b878e4cdd63a |
line wrap: on
line diff
--- a/stacking_ensembles.py Tue Apr 13 22:52:20 2021 +0000 +++ b/stacking_ensembles.py Sat May 01 01:53:41 2021 +0000 @@ -8,8 +8,8 @@ import mlxtend.classifier import mlxtend.regressor import pandas as pd -from galaxy_ml.utils import get_cv, get_estimator, get_search_params, load_model - +from galaxy_ml.utils import (get_cv, get_estimator, get_search_params, + load_model) warnings.filterwarnings("ignore") @@ -62,7 +62,9 @@ with open(meta_path, "rb") as f: meta_estimator = load_model(f) else: - estimator_json = params["algo_selection"]["meta_estimator"]["estimator_selector"] + estimator_json = params["algo_selection"]["meta_estimator"][ + "estimator_selector" + ] meta_estimator = get_estimator(estimator_json) options = params["algo_selection"]["options"] @@ -89,10 +91,14 @@ ensemble_estimator = klass(base_estimators, **options) elif mod == mlxtend.classifier: - ensemble_estimator = klass(classifiers=base_estimators, meta_classifier=meta_estimator, **options) + ensemble_estimator = klass( + classifiers=base_estimators, meta_classifier=meta_estimator, **options + ) else: - ensemble_estimator = klass(regressors=base_estimators, meta_regressor=meta_estimator, **options) + ensemble_estimator = klass( + regressors=base_estimators, meta_regressor=meta_estimator, **options + ) print(ensemble_estimator) for base_est in base_estimators: