Mercurial > repos > bgruening > sklearn_svm_classifier
diff pca.py @ 19:d67dcd63f6cb draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 17:32:55 +0000 |
parents | 02d2be90dedb |
children |
line wrap: on
line diff
--- a/pca.py Thu Oct 01 20:06:56 2020 +0000 +++ b/pca.py Tue Apr 13 17:32:55 2021 +0000 @@ -1,98 +1,185 @@ import argparse + import numpy as np -from sklearn.decomposition import PCA, IncrementalPCA, KernelPCA from galaxy_ml.utils import read_columns +from sklearn.decomposition import IncrementalPCA, KernelPCA, PCA + def main(): - parser = argparse.ArgumentParser(description='RDKit screen') - parser.add_argument('-i', '--infile', - help="Input file") - parser.add_argument('--header', action='store_true', help="Include the header row or skip it") - parser.add_argument('-c', '--columns', type=str.lower, default='all', choices=['by_index_number', 'all_but_by_index_number',\ - 'by_header_name', 'all_but_by_header_name', 'all_columns'], - help="Choose to select all columns, or exclude/include some") - parser.add_argument('-ci', '--column_indices', type=str.lower, - help="Choose to select all columns, or exclude/include some") - parser.add_argument('-n', '--number', nargs='?', type=int, default=None,\ - help="Number of components to keep. If not set, all components are kept") - parser.add_argument('--whiten', action='store_true', help="Whiten the components") - parser.add_argument('-t', '--pca_type', type=str.lower, default='classical', choices=['classical', 'incremental', 'kernel'], - help="Choose which flavour of PCA to use") - parser.add_argument('-s', '--svd_solver', type=str.lower, default='auto', choices=['auto', 'full', 'arpack', 'randomized'], - help="Choose the type of svd solver.") - parser.add_argument('-b', '--batch_size', nargs='?', type=int, default=None,\ - help="The number of samples to use for each batch") - parser.add_argument('-k', '--kernel', type=str.lower, default='linear',\ - choices=['linear', 'poly', 'rbf', 'sigmoid', 'cosine', 'precomputed'], - help="Choose the type of kernel.") - parser.add_argument('-g', '--gamma', nargs='?', type=float, default=None, - help='Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other kernels') - parser.add_argument('-tol', '--tolerance', type=float, default=0.0, - help='Convergence tolerance for arpack. If 0, optimal value will be chosen by arpack') - parser.add_argument('-mi', '--max_iter', nargs='?', type=int, default=None,\ - help="Maximum number of iterations for arpack") - parser.add_argument('-d', '--degree', type=int, default=3,\ - help="Degree for poly kernels. Ignored by other kernels") - parser.add_argument('-cf', '--coef0', type=float, default=1.0, - help='Independent term in poly and sigmoid kernels') - parser.add_argument('-e', '--eigen_solver', type=str.lower, default='auto', choices=['auto', 'dense', 'arpack'], - help="Choose the type of eigen solver.") - parser.add_argument('-o', '--outfile', - help="Base name for output file (no extension).") + parser = argparse.ArgumentParser(description="RDKit screen") + parser.add_argument("-i", "--infile", help="Input file") + parser.add_argument( + "--header", action="store_true", help="Include the header row or skip it" + ) + parser.add_argument( + "-c", + "--columns", + type=str.lower, + default="all", + choices=[ + "by_index_number", + "all_but_by_index_number", + "by_header_name", + "all_but_by_header_name", + "all_columns", + ], + help="Choose to select all columns, or exclude/include some", + ) + parser.add_argument( + "-ci", + "--column_indices", + type=str.lower, + help="Choose to select all columns, or exclude/include some", + ) + parser.add_argument( + "-n", + "--number", + nargs="?", + type=int, + default=None, + help="Number of components to keep. If not set, all components are kept", + ) + parser.add_argument("--whiten", action="store_true", help="Whiten the components") + parser.add_argument( + "-t", + "--pca_type", + type=str.lower, + default="classical", + choices=["classical", "incremental", "kernel"], + help="Choose which flavour of PCA to use", + ) + parser.add_argument( + "-s", + "--svd_solver", + type=str.lower, + default="auto", + choices=["auto", "full", "arpack", "randomized"], + help="Choose the type of svd solver.", + ) + parser.add_argument( + "-b", + "--batch_size", + nargs="?", + type=int, + default=None, + help="The number of samples to use for each batch", + ) + parser.add_argument( + "-k", + "--kernel", + type=str.lower, + default="linear", + choices=["linear", "poly", "rbf", "sigmoid", "cosine", "precomputed"], + help="Choose the type of kernel.", + ) + parser.add_argument( + "-g", + "--gamma", + nargs="?", + type=float, + default=None, + help="Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other kernels", + ) + parser.add_argument( + "-tol", + "--tolerance", + type=float, + default=0.0, + help="Convergence tolerance for arpack. If 0, optimal value will be chosen by arpack", + ) + parser.add_argument( + "-mi", + "--max_iter", + nargs="?", + type=int, + default=None, + help="Maximum number of iterations for arpack", + ) + parser.add_argument( + "-d", + "--degree", + type=int, + default=3, + help="Degree for poly kernels. Ignored by other kernels", + ) + parser.add_argument( + "-cf", + "--coef0", + type=float, + default=1.0, + help="Independent term in poly and sigmoid kernels", + ) + parser.add_argument( + "-e", + "--eigen_solver", + type=str.lower, + default="auto", + choices=["auto", "dense", "arpack"], + help="Choose the type of eigen solver.", + ) + parser.add_argument( + "-o", "--outfile", help="Base name for output file (no extension)." + ) args = parser.parse_args() usecols = None - cols = [] pca_params = {} - if args.columns == 'by_index_number' or args.columns == 'all_but_by_index_number': - usecols = [int(i) for i in args.column_indices.split(',')] - elif args.columns == 'by_header_name' or args.columns == 'all_but_by_header_name': + if args.columns == "by_index_number" or args.columns == "all_but_by_index_number": + usecols = [int(i) for i in args.column_indices.split(",")] + elif args.columns == "by_header_name" or args.columns == "all_but_by_header_name": usecols = args.column_indices - header = 'infer' if args.header else None + header = "infer" if args.header else None pca_input = read_columns( f=args.infile, c=usecols, c_option=args.columns, - sep='\t', + sep="\t", header=header, parse_dates=True, encoding=None, - index_col=None) + index_col=None, + ) - pca_params.update({'n_components': args.number}) + pca_params.update({"n_components": args.number}) - if args.pca_type == 'classical': - pca_params.update({'svd_solver': args.svd_solver, 'whiten': args.whiten}) - if args.svd_solver == 'arpack': - pca_params.update({'tol': args.tolerance}) + if args.pca_type == "classical": + pca_params.update({"svd_solver": args.svd_solver, "whiten": args.whiten}) + if args.svd_solver == "arpack": + pca_params.update({"tol": args.tolerance}) pca = PCA() - elif args.pca_type == 'incremental': - pca_params.update({'batch_size': args.batch_size, 'whiten': args.whiten}) + elif args.pca_type == "incremental": + pca_params.update({"batch_size": args.batch_size, "whiten": args.whiten}) pca = IncrementalPCA() - elif args.pca_type == 'kernel': - pca_params.update({'kernel': args.kernel, 'eigen_solver': args.eigen_solver, 'gamma': args.gamma}) + elif args.pca_type == "kernel": + pca_params.update( + { + "kernel": args.kernel, + "eigen_solver": args.eigen_solver, + "gamma": args.gamma, + } + ) - if args.kernel == 'poly': - pca_params.update({'degree': args.degree, 'coef0': args.coef0}) - elif args.kernel == 'sigmoid': - pca_params.update({'coef0': args.coef0}) - elif args.kernel == 'precomputed': + if args.kernel == "poly": + pca_params.update({"degree": args.degree, "coef0": args.coef0}) + elif args.kernel == "sigmoid": + pca_params.update({"coef0": args.coef0}) + elif args.kernel == "precomputed": pca_input = np.dot(pca_input, pca_input.T) - if args.eigen_solver == 'arpack': - pca_params.update({'tol': args.tolerance, 'max_iter': args.max_iter}) + if args.eigen_solver == "arpack": + pca_params.update({"tol": args.tolerance, "max_iter": args.max_iter}) pca = KernelPCA() print(pca_params) pca.set_params(**pca_params) pca_output = pca.fit_transform(pca_input) - np.savetxt(fname=args.outfile, X=pca_output, fmt='%.4f', delimiter='\t') + np.savetxt(fname=args.outfile, X=pca_output, fmt="%.4f", delimiter="\t") if __name__ == "__main__":