Mercurial > repos > bgruening > sklearn_svm_classifier
diff to_categorical.py @ 19:d67dcd63f6cb draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 17:32:55 +0000 |
parents | |
children | 14fa42b095c4 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/to_categorical.py Tue Apr 13 17:32:55 2021 +0000 @@ -0,0 +1,50 @@ +import argparse +import json +import warnings + +import numpy as np +import pandas as pd +from keras.utils import to_categorical + + +def main(inputs, infile, outfile, num_classes=None): + """ + Parameter + --------- + input : str + File path to galaxy tool parameter + + infile : str + File paths of input vector + + outfile : str + File path to output matrix + + num_classes : str + Total number of classes. If None, this would be inferred as the (largest number in y) + 1 + + """ + warnings.simplefilter("ignore") + + with open(inputs, "r") as param_handler: + params = json.load(param_handler) + + input_header = params["header0"] + header = "infer" if input_header else None + + input_vector = pd.read_csv(infile, sep="\t", header=header) + + output_matrix = to_categorical(input_vector, num_classes=num_classes) + + np.savetxt(outfile, output_matrix, fmt="%d", delimiter="\t") + + +if __name__ == "__main__": + aparser = argparse.ArgumentParser() + aparser.add_argument("-i", "--inputs", dest="inputs", required=True) + aparser.add_argument("-y", "--infile", dest="infile") + aparser.add_argument("-n", "--num_classes", dest="num_classes", type=int, default=None) + aparser.add_argument("-o", "--outfile", dest="outfile") + args = aparser.parse_args() + + main(args.inputs, args.infile, args.outfile, args.num_classes)