Mercurial > repos > bgruening > sklearn_svm_classifier
view search_model_validation.py @ 29:0630258dcf35 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 80417bf0158a9b596e485dd66408f738f405145a
author | bgruening |
---|---|
date | Mon, 02 Oct 2023 09:49:22 +0000 |
parents | b878e4cdd63a |
children |
line wrap: on
line source
import argparse import json import os import sys import warnings from distutils.version import LooseVersion as Version import imblearn import joblib import numpy as np import pandas as pd import skrebate from galaxy_ml import __version__ as galaxy_ml_version from galaxy_ml.binarize_target import IRAPSClassifier from galaxy_ml.model_persist import dump_model_to_h5, load_model_from_h5 from galaxy_ml.utils import ( clean_params, get_cv, get_main_estimator, get_module, get_scoring, read_columns, SafeEval, try_get_attr ) from scipy.io import mmread from sklearn import ( cluster, decomposition, feature_selection, kernel_approximation, model_selection, preprocessing, ) from sklearn.exceptions import FitFailedWarning from sklearn.model_selection import _search, _validation from sklearn.model_selection._validation import _score, cross_validate from sklearn.preprocessing import LabelEncoder from skopt import BayesSearchCV N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) # handle disk cache CACHE_DIR = os.path.join(os.getcwd(), "cached") NON_SEARCHABLE = ( "n_jobs", "pre_dispatch", "memory", "_path", "_dir", "nthread", "callbacks", ) def _eval_search_params(params_builder): search_params = {} for p in params_builder["param_set"]: search_list = p["sp_list"].strip() if search_list == "": continue param_name = p["sp_name"] if param_name.lower().endswith(NON_SEARCHABLE): print( "Warning: `%s` is not eligible for search and was " "omitted!" % param_name ) continue if not search_list.startswith(":"): safe_eval = SafeEval(load_scipy=True, load_numpy=True) ev = safe_eval(search_list) search_params[param_name] = ev else: # Have `:` before search list, asks for estimator evaluatio safe_eval_es = SafeEval(load_estimators=True) search_list = search_list[1:].strip() # TODO maybe add regular express check ev = safe_eval_es(search_list) preprocessings = ( preprocessing.StandardScaler(), preprocessing.Binarizer(), preprocessing.MaxAbsScaler(), preprocessing.Normalizer(), preprocessing.MinMaxScaler(), preprocessing.PolynomialFeatures(), preprocessing.RobustScaler(), feature_selection.SelectKBest(), feature_selection.GenericUnivariateSelect(), feature_selection.SelectPercentile(), feature_selection.SelectFpr(), feature_selection.SelectFdr(), feature_selection.SelectFwe(), feature_selection.VarianceThreshold(), decomposition.FactorAnalysis(random_state=0), decomposition.FastICA(random_state=0), decomposition.IncrementalPCA(), decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), decomposition.LatentDirichletAllocation(random_state=0, n_jobs=N_JOBS), decomposition.MiniBatchDictionaryLearning( random_state=0, n_jobs=N_JOBS ), decomposition.MiniBatchSparsePCA(random_state=0, n_jobs=N_JOBS), decomposition.NMF(random_state=0), decomposition.PCA(random_state=0), decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), decomposition.TruncatedSVD(random_state=0), kernel_approximation.Nystroem(random_state=0), kernel_approximation.RBFSampler(random_state=0), kernel_approximation.AdditiveChi2Sampler(), kernel_approximation.SkewedChi2Sampler(random_state=0), cluster.FeatureAgglomeration(), skrebate.ReliefF(n_jobs=N_JOBS), skrebate.SURF(n_jobs=N_JOBS), skrebate.SURFstar(n_jobs=N_JOBS), skrebate.MultiSURF(n_jobs=N_JOBS), skrebate.MultiSURFstar(n_jobs=N_JOBS), imblearn.under_sampling.ClusterCentroids(random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.CondensedNearestNeighbour( random_state=0, n_jobs=N_JOBS ), imblearn.under_sampling.EditedNearestNeighbours(n_jobs=N_JOBS), imblearn.under_sampling.RepeatedEditedNearestNeighbours(n_jobs=N_JOBS), imblearn.under_sampling.AllKNN(n_jobs=N_JOBS), imblearn.under_sampling.InstanceHardnessThreshold( random_state=0, n_jobs=N_JOBS ), imblearn.under_sampling.NearMiss(n_jobs=N_JOBS), imblearn.under_sampling.NeighbourhoodCleaningRule(n_jobs=N_JOBS), imblearn.under_sampling.OneSidedSelection( random_state=0, n_jobs=N_JOBS ), imblearn.under_sampling.RandomUnderSampler(random_state=0), imblearn.under_sampling.TomekLinks(n_jobs=N_JOBS), imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.BorderlineSMOTE(random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.KMeansSMOTE(random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.RandomOverSampler(random_state=0), imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.SMOTEN(random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.SMOTENC( categorical_features=[], random_state=0, n_jobs=N_JOBS ), imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), imblearn.combine.SMOTEENN(random_state=0), imblearn.combine.SMOTETomek(random_state=0), ) newlist = [] for obj in ev: if obj is None: newlist.append(None) elif obj == "all_0": newlist.extend(preprocessings[0:35]) elif obj == "sk_prep_all": # no KernalCenter() newlist.extend(preprocessings[0:7]) elif obj == "fs_all": newlist.extend(preprocessings[7:14]) elif obj == "decomp_all": newlist.extend(preprocessings[14:25]) elif obj == "k_appr_all": newlist.extend(preprocessings[25:29]) elif obj == "reb_all": newlist.extend(preprocessings[30:35]) elif obj == "imb_all": newlist.extend(preprocessings[35:54]) elif type(obj) is int and -1 < obj < len(preprocessings): newlist.append(preprocessings[obj]) elif hasattr(obj, "get_params"): # user uploaded object if "n_jobs" in obj.get_params(): newlist.append(obj.set_params(n_jobs=N_JOBS)) else: newlist.append(obj) else: sys.exit("Unsupported estimator type: %r" % (obj)) search_params[param_name] = newlist return search_params def _handle_X_y( estimator, params, infile1, infile2, loaded_df={}, ref_seq=None, intervals=None, targets=None, fasta_path=None, ): """read inputs Params ------- estimator : estimator object params : dict Galaxy tool parameter inputs infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values loaded_df : dict Contains loaded DataFrame objects with file path as keys ref_seq : str File path to dataset containing genome sequence file interval : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file Returns ------- estimator : estimator object after setting new attributes X : numpy array y : numpy array """ estimator_params = estimator.get_params() input_type = params["input_options"]["selected_input"] # tabular input if input_type == "tabular": header = "infer" if params["input_options"]["header1"] else None column_option = params["input_options"]["column_selector_options_1"][ "selected_column_selector_option" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = params["input_options"]["column_selector_options_1"]["col1"] else: c = None df_key = infile1 + repr(header) if df_key in loaded_df: infile1 = loaded_df[df_key] df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = df X = read_columns(df, c=c, c_option=column_option).astype(float) # sparse input elif input_type == "sparse": X = mmread(open(infile1, "r")) # fasta_file input elif input_type == "seq_fasta": pyfaidx = get_module("pyfaidx") sequences = pyfaidx.Fasta(fasta_path) n_seqs = len(sequences.keys()) X = np.arange(n_seqs)[:, np.newaxis] for param in estimator_params.keys(): if param.endswith("fasta_path"): estimator.set_params(**{param: fasta_path}) break else: raise ValueError( "The selected estimator doesn't support " "fasta file input! Please consider using " "KerasGBatchClassifier with " "FastaDNABatchGenerator/FastaProteinBatchGenerator " "or having GenomeOneHotEncoder/ProteinOneHotEncoder " "in pipeline!" ) elif input_type == "refseq_and_interval": path_params = { "data_batch_generator__ref_genome_path": ref_seq, "data_batch_generator__intervals_path": intervals, "data_batch_generator__target_path": targets, } estimator.set_params(**path_params) n_intervals = sum(1 for line in open(intervals)) X = np.arange(n_intervals)[:, np.newaxis] # Get target y header = "infer" if params["input_options"]["header2"] else None column_option = params["input_options"]["column_selector_options_2"][ "selected_column_selector_option2" ] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = params["input_options"]["column_selector_options_2"]["col2"] else: c = None df_key = infile2 + repr(header) if df_key in loaded_df: infile2 = loaded_df[df_key] else: infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = infile2 y = read_columns( infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True, ) if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() if input_type == "refseq_and_interval": estimator.set_params(data_batch_generator__features=y.ravel().tolist()) y = None # end y return estimator, X, y def _do_outer_cv(searcher, X, y, outer_cv, scoring, error_score="raise", outfile=None): """Do outer cross-validation for nested CV Parameters ---------- searcher : object SearchCV object X : numpy array Containing features y : numpy array Target values or labels outer_cv : int or CV splitter Control the cv splitting scoring : object Scorer error_score: str, float or numpy float Whether to raise fit error or return an value outfile : str File path to store the restuls """ if error_score == "raise": rval = cross_validate( searcher, X, y, scoring=scoring, cv=outer_cv, n_jobs=N_JOBS, verbose=0, error_score=error_score, ) else: warnings.simplefilter("always", FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: rval = cross_validate( searcher, X, y, scoring=scoring, cv=outer_cv, n_jobs=N_JOBS, verbose=0, error_score=error_score, ) except ValueError: pass for warning in w: print(repr(warning.message)) keys = list(rval.keys()) for k in keys: if k.startswith("test"): rval["mean_" + k] = np.mean(rval[k]) rval["std_" + k] = np.std(rval[k]) if k.endswith("time"): rval.pop(k) rval = pd.DataFrame(rval) rval = rval[sorted(rval.columns)] rval.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False) def _do_train_test_split_val( searcher, X, y, params, error_score="raise", primary_scoring=None, groups=None, outfile=None, ): """do train test split, searchCV validates on the train and then use the best_estimator_ to evaluate on the test Returns -------- Fitted SearchCV object """ train_test_split = try_get_attr("galaxy_ml.model_validations", "train_test_split") split_options = params["outer_split"] # splits if split_options["shuffle"] == "stratified": split_options["labels"] = y X, X_test, y, y_test = train_test_split(X, y, **split_options) elif split_options["shuffle"] == "group": if groups is None: raise ValueError( "No group based CV option was choosen for " "group shuffle!" ) split_options["labels"] = groups if y is None: X, X_test, groups, _ = train_test_split(X, groups, **split_options) else: X, X_test, y, y_test, groups, _ = train_test_split( X, y, groups, **split_options ) else: if split_options["shuffle"] == "None": split_options["shuffle"] = None X, X_test, y, y_test = train_test_split(X, y, **split_options) if error_score == "raise": searcher.fit(X, y, groups=groups) else: warnings.simplefilter("always", FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: searcher.fit(X, y, groups=groups) except ValueError: pass for warning in w: print(repr(warning.message)) scorer_ = searcher.scorer_ best_estimator_ = getattr(searcher, "best_estimator_") # TODO Solve deep learning models in pipeline if best_estimator_.__class__.__name__ == "KerasGBatchClassifier": test_score = best_estimator_.evaluate( X_test, scorer=scorer_, ) else: test_score = _score(best_estimator_, X_test, y_test, scorer_) if not isinstance(scorer_, dict): test_score = {primary_scoring: test_score} for key, value in test_score.items(): test_score[key] = [value] result_df = pd.DataFrame(test_score) result_df.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False) return searcher def _set_memory(estimator, memory): """set memeory cache Parameters ---------- estimator : python object memory : joblib.Memory object Returns ------- estimator : estimator object after setting new attributes """ if isinstance(estimator, IRAPSClassifier): estimator.set_params(memory=memory) return estimator estimator_params = estimator.get_params() new_params = {} for k in estimator_params.keys(): if k.endswith("irapsclassifier__memory"): new_params[k] = memory estimator.set_params(**new_params) return estimator def main( inputs, infile_estimator, infile1, infile2, outfile_result, outfile_object=None, groups=None, ref_seq=None, intervals=None, targets=None, fasta_path=None, ): """ Parameter --------- inputs : str File path to galaxy tool parameter. infile_estimator : str File path to estimator. infile1 : str File path to dataset containing features infile2 : str File path to dataset containing target values outfile_result : str File path to save the results, either cv_results or test result outfile_object : str, optional File path to save searchCV object groups : str File path to dataset containing groups labels ref_seq : str File path to dataset containing genome sequence file intervals : str File path to dataset containing interval file targets : str File path to dataset compressed target bed file fasta_path : str File path to dataset containing fasta file """ warnings.simplefilter("ignore") # store read dataframe object loaded_df = {} with open(inputs, "r") as param_handler: params = json.load(param_handler) # Override the refit parameter params["options"]["refit"] = ( True if ( params["save"] != "nope" or params["outer_split"]["split_mode"] == "nested_cv" ) else False ) estimator = load_model_from_h5(infile_estimator) estimator = clean_params(estimator) if estimator.__class__.__name__ == "KerasGBatchClassifier": _fit_and_score = try_get_attr( "galaxy_ml.model_validations", "_fit_and_score", ) setattr(_search, "_fit_and_score", _fit_and_score) setattr(_validation, "_fit_and_score", _fit_and_score) search_algos_and_options = params["search_algos"] optimizer = search_algos_and_options.pop("selected_search_algo") if optimizer == "skopt.BayesSearchCV": optimizer = BayesSearchCV else: optimizer = getattr(model_selection, optimizer) # handle gridsearchcv options options = params["options"] options.update(search_algos_and_options) if groups: header = ( "infer" if (options["cv_selector"]["groups_selector"]["header_g"]) else None ) column_option = options["cv_selector"]["groups_selector"][ "column_selector_options_g" ]["selected_column_selector_option_g"] if column_option in [ "by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name", ]: c = options["cv_selector"]["groups_selector"]["column_selector_options_g"][ "col_g" ] else: c = None df_key = groups + repr(header) groups = pd.read_csv(groups, sep="\t", header=header, parse_dates=True) loaded_df[df_key] = groups groups = read_columns( groups, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True, ) groups = groups.ravel() options["cv_selector"]["groups_selector"] = groups cv_selector = options.pop("cv_selector") if Version(galaxy_ml_version) < Version("0.8.3"): cv_selector.pop("n_stratification_bins", None) splitter, groups = get_cv(cv_selector) options["cv"] = splitter primary_scoring = options["scoring"]["primary_scoring"] options["scoring"] = get_scoring(options["scoring"]) # TODO make BayesSearchCV support multiple scoring if optimizer == "skopt.BayesSearchCV" and isinstance(options["scoring"], dict): options["scoring"] = options["scoring"][primary_scoring] warnings.warn( "BayesSearchCV doesn't support multiple " "scorings! Primary scoring is used." ) if options["error_score"]: options["error_score"] = "raise" else: options["error_score"] = np.NaN if options["refit"] and isinstance(options["scoring"], dict): options["refit"] = primary_scoring if "pre_dispatch" in options and options["pre_dispatch"] == "": options["pre_dispatch"] = None params_builder = params["search_params_builder"] param_grid = _eval_search_params(params_builder) # save the SearchCV object without fit if params["save"] == "save_no_fit": searcher = optimizer(estimator, param_grid, **options) dump_model_to_h5(searcher, outfile_object) return 0 # read inputs and loads new attributes, like paths estimator, X, y = _handle_X_y( estimator, params, infile1, infile2, loaded_df=loaded_df, ref_seq=ref_seq, intervals=intervals, targets=targets, fasta_path=fasta_path, ) label_encoder = LabelEncoder() if get_main_estimator(estimator).__class__.__name__ == "XGBClassifier": y = label_encoder.fit_transform(y) # cache iraps_core fits could increase search speed significantly memory = joblib.Memory(location=CACHE_DIR, verbose=0) estimator = _set_memory(estimator, memory) searcher = optimizer(estimator, param_grid, **options) split_mode = params["outer_split"].pop("split_mode") # Nested CV if split_mode == "nested_cv": cv_selector = params["outer_split"]["cv_selector"] if Version(galaxy_ml_version) < Version("0.8.3"): cv_selector.pop("n_stratification_bins", None) outer_cv, _ = get_cv(cv_selector) # nested CV, outer cv using cross_validate if options["error_score"] == "raise": rval = cross_validate( searcher, X, y, groups=groups, scoring=options["scoring"], cv=outer_cv, n_jobs=N_JOBS, verbose=options["verbose"], fit_params={"groups": groups}, return_estimator=(params["save"] == "save_estimator"), error_score=options["error_score"], return_train_score=True, ) else: warnings.simplefilter("always", FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: rval = cross_validate( searcher, X, y, groups=groups, scoring=options["scoring"], cv=outer_cv, n_jobs=N_JOBS, verbose=options["verbose"], fit_params={"groups": groups}, return_estimator=(params["save"] == "save_estimator"), error_score=options["error_score"], return_train_score=True, ) except ValueError: pass for warning in w: print(repr(warning.message)) fitted_searchers = rval.pop("estimator", []) if fitted_searchers: import os pwd = os.getcwd() save_dir = os.path.join(pwd, "cv_results_in_folds") try: os.mkdir(save_dir) for idx, obj in enumerate(fitted_searchers): target_name = "cv_results_" + "_" + "split%d" % idx target_path = os.path.join(pwd, save_dir, target_name) cv_results_ = getattr(obj, "cv_results_", None) if not cv_results_: print("%s is not available" % target_name) continue cv_results_ = pd.DataFrame(cv_results_) cv_results_ = cv_results_[sorted(cv_results_.columns)] cv_results_.to_csv(target_path, sep="\t", header=True, index=False) except Exception as e: print(e) keys = list(rval.keys()) for k in keys: if k.startswith("test"): rval["mean_" + k] = np.mean(rval[k]) rval["std_" + k] = np.std(rval[k]) if k.endswith("time"): rval.pop(k) rval = pd.DataFrame(rval) rval = rval[sorted(rval.columns)] rval.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) return 0 # deprecate train test split mode """searcher = _do_train_test_split_val( searcher, X, y, params, primary_scoring=primary_scoring, error_score=options['error_score'], groups=groups, outfile=outfile_result)""" # no outer split else: searcher.set_params(n_jobs=N_JOBS) if options["error_score"] == "raise": searcher.fit(X, y, groups=groups) else: warnings.simplefilter("always", FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: searcher.fit(X, y, groups=groups) except ValueError: pass for warning in w: print(repr(warning.message)) cv_results = pd.DataFrame(searcher.cv_results_) cv_results = cv_results[sorted(cv_results.columns)] cv_results.to_csv( path_or_buf=outfile_result, sep="\t", header=True, index=False ) memory.clear(warn=False) # output best estimator, and weights if applicable if outfile_object: best_estimator_ = getattr(searcher, "best_estimator_", None) if not best_estimator_: warnings.warn( "GridSearchCV object has no attribute " "'best_estimator_', because either it's " "nested gridsearch or `refit` is False!" ) return dump_model_to_h5(best_estimator_, outfile_object) if __name__ == "__main__": aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-e", "--estimator", dest="infile_estimator") aparser.add_argument("-X", "--infile1", dest="infile1") aparser.add_argument("-y", "--infile2", dest="infile2") aparser.add_argument("-O", "--outfile_result", dest="outfile_result") aparser.add_argument("-o", "--outfile_object", dest="outfile_object") aparser.add_argument("-g", "--groups", dest="groups") aparser.add_argument("-r", "--ref_seq", dest="ref_seq") aparser.add_argument("-b", "--intervals", dest="intervals") aparser.add_argument("-t", "--targets", dest="targets") aparser.add_argument("-f", "--fasta_path", dest="fasta_path") args = aparser.parse_args() main(**vars(args))