Mercurial > repos > bgruening > sklearn_svm_classifier
view utils.py @ 7:372582a7a34d draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 57f4407e278a615f47a377a3328782b1d8e0b54d
author | bgruening |
---|---|
date | Sun, 30 Dec 2018 01:50:39 -0500 |
parents | 1c5989b930e3 |
children | 1a9d5a8fff12 |
line wrap: on
line source
import json import numpy as np import os import pandas import pickle import re import scipy import sklearn import sys import warnings import xgboost from asteval import Interpreter, make_symbol_table from sklearn import (cluster, compose, decomposition, ensemble, feature_extraction, feature_selection, gaussian_process, kernel_approximation, metrics, model_selection, naive_bayes, neighbors, pipeline, preprocessing, svm, linear_model, tree, discriminant_analysis) try: import skrebate except ModuleNotFoundError: pass N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) try: sk_whitelist except NameError: sk_whitelist = None class SafePickler(pickle.Unpickler): """ Used to safely deserialize scikit-learn model objects serialized by cPickle.dump Usage: eg.: SafePickler.load(pickled_file_object) """ def find_class(self, module, name): # sk_whitelist could be read from tool global sk_whitelist if not sk_whitelist: whitelist_file = os.path.join(os.path.dirname(__file__), 'sk_whitelist.json') with open(whitelist_file, 'r') as f: sk_whitelist = json.load(f) bad_names = ('and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'exec', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass', 'print', 'raise', 'return', 'try', 'system', 'while', 'with', 'True', 'False', 'None', 'eval', 'execfile', '__import__', '__package__', '__subclasses__', '__bases__', '__globals__', '__code__', '__closure__', '__func__', '__self__', '__module__', '__dict__', '__class__', '__call__', '__get__', '__getattribute__', '__subclasshook__', '__new__', '__init__', 'func_globals', 'func_code', 'func_closure', 'im_class', 'im_func', 'im_self', 'gi_code', 'gi_frame', '__asteval__', 'f_locals', '__mro__') good_names = ['copy_reg._reconstructor', '__builtin__.object'] if re.match(r'^[a-zA-Z_][a-zA-Z0-9_]*$', name): fullname = module + '.' + name if (fullname in good_names)\ or ( ( module.startswith('sklearn.') or module.startswith('xgboost.') or module.startswith('skrebate.') or module.startswith('imblearn') or module.startswith('numpy.') or module == 'numpy' ) and (name not in bad_names) ): # TODO: replace with a whitelist checker if fullname not in sk_whitelist['SK_NAMES'] + sk_whitelist['SKR_NAMES'] + sk_whitelist['XGB_NAMES'] + sk_whitelist['NUMPY_NAMES'] + sk_whitelist['IMBLEARN_NAMES'] + good_names: print("Warning: global %s is not in pickler whitelist yet and will loss support soon. Contact tool author or leave a message at github.com" % fullname) mod = sys.modules[module] return getattr(mod, name) raise pickle.UnpicklingError("global '%s' is forbidden" % fullname) def load_model(file): return SafePickler(file).load() def read_columns(f, c=None, c_option='by_index_number', return_df=False, **args): data = pandas.read_csv(f, **args) if c_option == 'by_index_number': cols = list(map(lambda x: x - 1, c)) data = data.iloc[:, cols] if c_option == 'all_but_by_index_number': cols = list(map(lambda x: x - 1, c)) data.drop(data.columns[cols], axis=1, inplace=True) if c_option == 'by_header_name': cols = [e.strip() for e in c.split(',')] data = data[cols] if c_option == 'all_but_by_header_name': cols = [e.strip() for e in c.split(',')] data.drop(cols, axis=1, inplace=True) y = data.values if return_df: return y, data else: return y ## generate an instance for one of sklearn.feature_selection classes def feature_selector(inputs): selector = inputs['selected_algorithm'] selector = getattr(sklearn.feature_selection, selector) options = inputs['options'] if inputs['selected_algorithm'] == 'SelectFromModel': if not options['threshold'] or options['threshold'] == 'None': options['threshold'] = None else: try: options['threshold'] = float(options['threshold']) except ValueError: pass if inputs['model_inputter']['input_mode'] == 'prefitted': model_file = inputs['model_inputter']['fitted_estimator'] with open(model_file, 'rb') as model_handler: fitted_estimator = load_model(model_handler) new_selector = selector(fitted_estimator, prefit=True, **options) else: estimator_json = inputs['model_inputter']['estimator_selector'] estimator = get_estimator(estimator_json) new_selector = selector(estimator, **options) elif inputs['selected_algorithm'] == 'RFE': estimator = get_estimator(inputs['estimator_selector']) step = options.get('step', None) if step and step >= 1.0: options['step'] = int(step) new_selector = selector(estimator, **options) elif inputs['selected_algorithm'] == 'RFECV': options['scoring'] = get_scoring(options['scoring']) options['n_jobs'] = N_JOBS splitter, groups = get_cv(options.pop('cv_selector')) # TODO support group cv splitters options['cv'] = splitter step = options.get('step', None) if step and step >= 1.0: options['step'] = int(step) estimator = get_estimator(inputs['estimator_selector']) new_selector = selector(estimator, **options) elif inputs['selected_algorithm'] == 'VarianceThreshold': new_selector = selector(**options) else: score_func = inputs['score_func'] score_func = getattr(sklearn.feature_selection, score_func) new_selector = selector(score_func, **options) return new_selector def get_X_y(params, file1, file2): input_type = params['selected_tasks']['selected_algorithms']['input_options']['selected_input'] if input_type == 'tabular': header = 'infer' if params['selected_tasks']['selected_algorithms']['input_options']['header1'] else None column_option = params['selected_tasks']['selected_algorithms']['input_options']['column_selector_options_1']['selected_column_selector_option'] if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['selected_tasks']['selected_algorithms']['input_options']['column_selector_options_1']['col1'] else: c = None X = read_columns( file1, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True ) else: X = mmread(file1) header = 'infer' if params['selected_tasks']['selected_algorithms']['input_options']['header2'] else None column_option = params['selected_tasks']['selected_algorithms']['input_options']['column_selector_options_2']['selected_column_selector_option2'] if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['selected_tasks']['selected_algorithms']['input_options']['column_selector_options_2']['col2'] else: c = None y = read_columns( file2, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True ) y = y.ravel() return X, y class SafeEval(Interpreter): def __init__(self, load_scipy=False, load_numpy=False, load_estimators=False): # File opening and other unneeded functions could be dropped unwanted = ['open', 'type', 'dir', 'id', 'str', 'repr'] # Allowed symbol table. Add more if needed. new_syms = { 'np_arange': getattr(np, 'arange'), 'ensemble_ExtraTreesClassifier': getattr(ensemble, 'ExtraTreesClassifier') } syms = make_symbol_table(use_numpy=False, **new_syms) if load_scipy: scipy_distributions = scipy.stats.distributions.__dict__ for k, v in scipy_distributions.items(): if isinstance(v, (scipy.stats.rv_continuous, scipy.stats.rv_discrete)): syms['scipy_stats_' + k] = v if load_numpy: from_numpy_random = ['beta', 'binomial', 'bytes', 'chisquare', 'choice', 'dirichlet', 'division', 'exponential', 'f', 'gamma', 'geometric', 'gumbel', 'hypergeometric', 'laplace', 'logistic', 'lognormal', 'logseries', 'mtrand', 'multinomial', 'multivariate_normal', 'negative_binomial', 'noncentral_chisquare', 'noncentral_f', 'normal', 'pareto', 'permutation', 'poisson', 'power', 'rand', 'randint', 'randn', 'random', 'random_integers', 'random_sample', 'ranf', 'rayleigh', 'sample', 'seed', 'set_state', 'shuffle', 'standard_cauchy', 'standard_exponential', 'standard_gamma', 'standard_normal', 'standard_t', 'triangular', 'uniform', 'vonmises', 'wald', 'weibull', 'zipf'] for f in from_numpy_random: syms['np_random_' + f] = getattr(np.random, f) if load_estimators: estimator_table = { 'sklearn_svm' : getattr(sklearn, 'svm'), 'sklearn_tree' : getattr(sklearn, 'tree'), 'sklearn_ensemble' : getattr(sklearn, 'ensemble'), 'sklearn_neighbors' : getattr(sklearn, 'neighbors'), 'sklearn_naive_bayes' : getattr(sklearn, 'naive_bayes'), 'sklearn_linear_model' : getattr(sklearn, 'linear_model'), 'sklearn_cluster' : getattr(sklearn, 'cluster'), 'sklearn_decomposition' : getattr(sklearn, 'decomposition'), 'sklearn_preprocessing' : getattr(sklearn, 'preprocessing'), 'sklearn_feature_selection' : getattr(sklearn, 'feature_selection'), 'sklearn_kernel_approximation' : getattr(sklearn, 'kernel_approximation'), 'skrebate_ReliefF': getattr(skrebate, 'ReliefF'), 'skrebate_SURF': getattr(skrebate, 'SURF'), 'skrebate_SURFstar': getattr(skrebate, 'SURFstar'), 'skrebate_MultiSURF': getattr(skrebate, 'MultiSURF'), 'skrebate_MultiSURFstar': getattr(skrebate, 'MultiSURFstar'), 'skrebate_TuRF': getattr(skrebate, 'TuRF'), 'xgboost_XGBClassifier' : getattr(xgboost, 'XGBClassifier'), 'xgboost_XGBRegressor' : getattr(xgboost, 'XGBRegressor') } syms.update(estimator_table) for key in unwanted: syms.pop(key, None) super(SafeEval, self).__init__(symtable=syms, use_numpy=False, minimal=False, no_if=True, no_for=True, no_while=True, no_try=True, no_functiondef=True, no_ifexp=True, no_listcomp=False, no_augassign=False, no_assert=True, no_delete=True, no_raise=True, no_print=True) def get_estimator(estimator_json): estimator_module = estimator_json['selected_module'] if estimator_module == 'customer_estimator': c_estimator = estimator_json['c_estimator'] with open(c_estimator, 'rb') as model_handler: new_model = load_model(model_handler) return new_model estimator_cls = estimator_json['selected_estimator'] if estimator_module == 'xgboost': cls = getattr(xgboost, estimator_cls) else: module = getattr(sklearn, estimator_module) cls = getattr(module, estimator_cls) estimator = cls() estimator_params = estimator_json['text_params'].strip() if estimator_params != '': try: params = safe_eval('dict(' + estimator_params + ')') except ValueError: sys.exit("Unsupported parameter input: `%s`" % estimator_params) estimator.set_params(**params) if 'n_jobs' in estimator.get_params(): estimator.set_params(n_jobs=N_JOBS) return estimator def get_cv(cv_json): """ cv_json: e.g.: { 'selected_cv': 'StratifiedKFold', 'n_splits': 3, 'shuffle': True, 'random_state': 0 } """ cv = cv_json.pop('selected_cv') if cv == 'default': return cv_json['n_splits'], None groups = cv_json.pop('groups', None) if groups: groups = groups.strip() if groups != '': if groups.startswith('__ob__'): groups = groups[6:] if groups.endswith('__cb__'): groups = groups[:-6] groups = [int(x.strip()) for x in groups.split(',')] for k, v in cv_json.items(): if v == '': cv_json[k] = None test_fold = cv_json.get('test_fold', None) if test_fold: if test_fold.startswith('__ob__'): test_fold = test_fold[6:] if test_fold.endswith('__cb__'): test_fold = test_fold[:-6] cv_json['test_fold'] = [int(x.strip()) for x in test_fold.split(',')] test_size = cv_json.get('test_size', None) if test_size and test_size > 1.0: cv_json['test_size'] = int(test_size) cv_class = getattr(model_selection, cv) splitter = cv_class(**cv_json) return splitter, groups # needed when sklearn < v0.20 def balanced_accuracy_score(y_true, y_pred): C = metrics.confusion_matrix(y_true, y_pred) with np.errstate(divide='ignore', invalid='ignore'): per_class = np.diag(C) / C.sum(axis=1) if np.any(np.isnan(per_class)): warnings.warn('y_pred contains classes not in y_true') per_class = per_class[~np.isnan(per_class)] score = np.mean(per_class) return score def get_scoring(scoring_json): if scoring_json['primary_scoring'] == 'default': return None my_scorers = metrics.SCORERS if 'balanced_accuracy' not in my_scorers: my_scorers['balanced_accuracy'] = metrics.make_scorer(balanced_accuracy_score) if scoring_json['secondary_scoring'] != 'None'\ and scoring_json['secondary_scoring'] != scoring_json['primary_scoring']: scoring = {} scoring['primary'] = my_scorers[scoring_json['primary_scoring']] for scorer in scoring_json['secondary_scoring'].split(','): if scorer != scoring_json['primary_scoring']: scoring[scorer] = my_scorers[scorer] return scoring return my_scorers[scoring_json['primary_scoring']]