Mercurial > repos > bgruening > sklearn_to_categorical
comparison fitted_model_eval.py @ 0:59e8b4328c82 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 208a8d348e7c7a182cfbe1b6f17868146428a7e2"
| author | bgruening |
|---|---|
| date | Tue, 13 Apr 2021 22:40:10 +0000 |
| parents | |
| children | f93f0cdbaf18 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:59e8b4328c82 |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import warnings | |
| 4 | |
| 5 import pandas as pd | |
| 6 from galaxy_ml.utils import get_scoring, load_model, read_columns | |
| 7 from scipy.io import mmread | |
| 8 from sklearn.metrics.scorer import _check_multimetric_scoring | |
| 9 from sklearn.model_selection._validation import _score | |
| 10 from sklearn.pipeline import Pipeline | |
| 11 | |
| 12 | |
| 13 def _get_X_y(params, infile1, infile2): | |
| 14 """read from inputs and output X and y | |
| 15 | |
| 16 Parameters | |
| 17 ---------- | |
| 18 params : dict | |
| 19 Tool inputs parameter | |
| 20 infile1 : str | |
| 21 File path to dataset containing features | |
| 22 infile2 : str | |
| 23 File path to dataset containing target values | |
| 24 | |
| 25 """ | |
| 26 # store read dataframe object | |
| 27 loaded_df = {} | |
| 28 | |
| 29 input_type = params["input_options"]["selected_input"] | |
| 30 # tabular input | |
| 31 if input_type == "tabular": | |
| 32 header = "infer" if params["input_options"]["header1"] else None | |
| 33 column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] | |
| 34 if column_option in [ | |
| 35 "by_index_number", | |
| 36 "all_but_by_index_number", | |
| 37 "by_header_name", | |
| 38 "all_but_by_header_name", | |
| 39 ]: | |
| 40 c = params["input_options"]["column_selector_options_1"]["col1"] | |
| 41 else: | |
| 42 c = None | |
| 43 | |
| 44 df_key = infile1 + repr(header) | |
| 45 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) | |
| 46 loaded_df[df_key] = df | |
| 47 | |
| 48 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 49 # sparse input | |
| 50 elif input_type == "sparse": | |
| 51 X = mmread(open(infile1, "r")) | |
| 52 | |
| 53 # Get target y | |
| 54 header = "infer" if params["input_options"]["header2"] else None | |
| 55 column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] | |
| 56 if column_option in [ | |
| 57 "by_index_number", | |
| 58 "all_but_by_index_number", | |
| 59 "by_header_name", | |
| 60 "all_but_by_header_name", | |
| 61 ]: | |
| 62 c = params["input_options"]["column_selector_options_2"]["col2"] | |
| 63 else: | |
| 64 c = None | |
| 65 | |
| 66 df_key = infile2 + repr(header) | |
| 67 if df_key in loaded_df: | |
| 68 infile2 = loaded_df[df_key] | |
| 69 else: | |
| 70 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | |
| 71 loaded_df[df_key] = infile2 | |
| 72 | |
| 73 y = read_columns(infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True) | |
| 74 if len(y.shape) == 2 and y.shape[1] == 1: | |
| 75 y = y.ravel() | |
| 76 | |
| 77 return X, y | |
| 78 | |
| 79 | |
| 80 def main( | |
| 81 inputs, | |
| 82 infile_estimator, | |
| 83 outfile_eval, | |
| 84 infile_weights=None, | |
| 85 infile1=None, | |
| 86 infile2=None, | |
| 87 ): | |
| 88 """ | |
| 89 Parameter | |
| 90 --------- | |
| 91 inputs : str | |
| 92 File path to galaxy tool parameter | |
| 93 | |
| 94 infile_estimator : strgit | |
| 95 File path to trained estimator input | |
| 96 | |
| 97 outfile_eval : str | |
| 98 File path to save the evalulation results, tabular | |
| 99 | |
| 100 infile_weights : str | |
| 101 File path to weights input | |
| 102 | |
| 103 infile1 : str | |
| 104 File path to dataset containing features | |
| 105 | |
| 106 infile2 : str | |
| 107 File path to dataset containing target values | |
| 108 """ | |
| 109 warnings.filterwarnings("ignore") | |
| 110 | |
| 111 with open(inputs, "r") as param_handler: | |
| 112 params = json.load(param_handler) | |
| 113 | |
| 114 X_test, y_test = _get_X_y(params, infile1, infile2) | |
| 115 | |
| 116 # load model | |
| 117 with open(infile_estimator, "rb") as est_handler: | |
| 118 estimator = load_model(est_handler) | |
| 119 | |
| 120 main_est = estimator | |
| 121 if isinstance(estimator, Pipeline): | |
| 122 main_est = estimator.steps[-1][-1] | |
| 123 if hasattr(main_est, "config") and hasattr(main_est, "load_weights"): | |
| 124 if not infile_weights or infile_weights == "None": | |
| 125 raise ValueError( | |
| 126 "The selected model skeleton asks for weights, " "but no dataset for weights was provided!" | |
| 127 ) | |
| 128 main_est.load_weights(infile_weights) | |
| 129 | |
| 130 # handle scorer, convert to scorer dict | |
| 131 # Check if scoring is specified | |
| 132 scoring = params["scoring"] | |
| 133 if scoring is not None: | |
| 134 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) | |
| 135 # Check if secondary_scoring is specified | |
| 136 secondary_scoring = scoring.get("secondary_scoring", None) | |
| 137 if secondary_scoring is not None: | |
| 138 # If secondary_scoring is specified, convert the list into comman separated string | |
| 139 scoring["secondary_scoring"] = ",".join(scoring["secondary_scoring"]) | |
| 140 | |
| 141 scorer = get_scoring(scoring) | |
| 142 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | |
| 143 | |
| 144 if hasattr(estimator, "evaluate"): | |
| 145 scores = estimator.evaluate(X_test, y_test=y_test, scorer=scorer, is_multimetric=True) | |
| 146 else: | |
| 147 scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) | |
| 148 | |
| 149 # handle output | |
| 150 for name, score in scores.items(): | |
| 151 scores[name] = [score] | |
| 152 df = pd.DataFrame(scores) | |
| 153 df = df[sorted(df.columns)] | |
| 154 df.to_csv(path_or_buf=outfile_eval, sep="\t", header=True, index=False) | |
| 155 | |
| 156 | |
| 157 if __name__ == "__main__": | |
| 158 aparser = argparse.ArgumentParser() | |
| 159 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 160 aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator") | |
| 161 aparser.add_argument("-w", "--infile_weights", dest="infile_weights") | |
| 162 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 163 aparser.add_argument("-y", "--infile2", dest="infile2") | |
| 164 aparser.add_argument("-O", "--outfile_eval", dest="outfile_eval") | |
| 165 args = aparser.parse_args() | |
| 166 | |
| 167 main( | |
| 168 args.inputs, | |
| 169 args.infile_estimator, | |
| 170 args.outfile_eval, | |
| 171 infile_weights=args.infile_weights, | |
| 172 infile1=args.infile1, | |
| 173 infile2=args.infile2, | |
| 174 ) |
