Mercurial > repos > bgruening > sklearn_to_categorical
comparison search_model_validation.py @ 0:59e8b4328c82 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 208a8d348e7c7a182cfbe1b6f17868146428a7e2"
| author | bgruening |
|---|---|
| date | Tue, 13 Apr 2021 22:40:10 +0000 |
| parents | |
| children | f93f0cdbaf18 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:59e8b4328c82 |
|---|---|
| 1 import argparse | |
| 2 import collections | |
| 3 import json | |
| 4 import os | |
| 5 import pickle | |
| 6 import sys | |
| 7 import warnings | |
| 8 | |
| 9 import imblearn | |
| 10 import joblib | |
| 11 import numpy as np | |
| 12 import pandas as pd | |
| 13 import skrebate | |
| 14 from galaxy_ml.utils import ( | |
| 15 clean_params, | |
| 16 get_cv, | |
| 17 get_main_estimator, | |
| 18 get_module, | |
| 19 get_scoring, | |
| 20 load_model, | |
| 21 read_columns, | |
| 22 SafeEval, | |
| 23 try_get_attr | |
| 24 ) | |
| 25 from scipy.io import mmread | |
| 26 from sklearn import ( | |
| 27 cluster, | |
| 28 decomposition, | |
| 29 feature_selection, | |
| 30 kernel_approximation, | |
| 31 model_selection, | |
| 32 preprocessing, | |
| 33 ) | |
| 34 from sklearn.exceptions import FitFailedWarning | |
| 35 from sklearn.model_selection import _search, _validation | |
| 36 from sklearn.model_selection._validation import _score, cross_validate | |
| 37 | |
| 38 | |
| 39 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | |
| 40 setattr(_search, "_fit_and_score", _fit_and_score) | |
| 41 setattr(_validation, "_fit_and_score", _fit_and_score) | |
| 42 | |
| 43 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) | |
| 44 # handle disk cache | |
| 45 CACHE_DIR = os.path.join(os.getcwd(), "cached") | |
| 46 del os | |
| 47 NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") | |
| 48 | |
| 49 | |
| 50 def _eval_search_params(params_builder): | |
| 51 search_params = {} | |
| 52 | |
| 53 for p in params_builder["param_set"]: | |
| 54 search_list = p["sp_list"].strip() | |
| 55 if search_list == "": | |
| 56 continue | |
| 57 | |
| 58 param_name = p["sp_name"] | |
| 59 if param_name.lower().endswith(NON_SEARCHABLE): | |
| 60 print("Warning: `%s` is not eligible for search and was " "omitted!" % param_name) | |
| 61 continue | |
| 62 | |
| 63 if not search_list.startswith(":"): | |
| 64 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
| 65 ev = safe_eval(search_list) | |
| 66 search_params[param_name] = ev | |
| 67 else: | |
| 68 # Have `:` before search list, asks for estimator evaluatio | |
| 69 safe_eval_es = SafeEval(load_estimators=True) | |
| 70 search_list = search_list[1:].strip() | |
| 71 # TODO maybe add regular express check | |
| 72 ev = safe_eval_es(search_list) | |
| 73 preprocessings = ( | |
| 74 preprocessing.StandardScaler(), | |
| 75 preprocessing.Binarizer(), | |
| 76 preprocessing.MaxAbsScaler(), | |
| 77 preprocessing.Normalizer(), | |
| 78 preprocessing.MinMaxScaler(), | |
| 79 preprocessing.PolynomialFeatures(), | |
| 80 preprocessing.RobustScaler(), | |
| 81 feature_selection.SelectKBest(), | |
| 82 feature_selection.GenericUnivariateSelect(), | |
| 83 feature_selection.SelectPercentile(), | |
| 84 feature_selection.SelectFpr(), | |
| 85 feature_selection.SelectFdr(), | |
| 86 feature_selection.SelectFwe(), | |
| 87 feature_selection.VarianceThreshold(), | |
| 88 decomposition.FactorAnalysis(random_state=0), | |
| 89 decomposition.FastICA(random_state=0), | |
| 90 decomposition.IncrementalPCA(), | |
| 91 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), | |
| 92 decomposition.LatentDirichletAllocation(random_state=0, n_jobs=N_JOBS), | |
| 93 decomposition.MiniBatchDictionaryLearning(random_state=0, n_jobs=N_JOBS), | |
| 94 decomposition.MiniBatchSparsePCA(random_state=0, n_jobs=N_JOBS), | |
| 95 decomposition.NMF(random_state=0), | |
| 96 decomposition.PCA(random_state=0), | |
| 97 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | |
| 98 decomposition.TruncatedSVD(random_state=0), | |
| 99 kernel_approximation.Nystroem(random_state=0), | |
| 100 kernel_approximation.RBFSampler(random_state=0), | |
| 101 kernel_approximation.AdditiveChi2Sampler(), | |
| 102 kernel_approximation.SkewedChi2Sampler(random_state=0), | |
| 103 cluster.FeatureAgglomeration(), | |
| 104 skrebate.ReliefF(n_jobs=N_JOBS), | |
| 105 skrebate.SURF(n_jobs=N_JOBS), | |
| 106 skrebate.SURFstar(n_jobs=N_JOBS), | |
| 107 skrebate.MultiSURF(n_jobs=N_JOBS), | |
| 108 skrebate.MultiSURFstar(n_jobs=N_JOBS), | |
| 109 imblearn.under_sampling.ClusterCentroids(random_state=0, n_jobs=N_JOBS), | |
| 110 imblearn.under_sampling.CondensedNearestNeighbour(random_state=0, n_jobs=N_JOBS), | |
| 111 imblearn.under_sampling.EditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), | |
| 112 imblearn.under_sampling.RepeatedEditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), | |
| 113 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | |
| 114 imblearn.under_sampling.InstanceHardnessThreshold(random_state=0, n_jobs=N_JOBS), | |
| 115 imblearn.under_sampling.NearMiss(random_state=0, n_jobs=N_JOBS), | |
| 116 imblearn.under_sampling.NeighbourhoodCleaningRule(random_state=0, n_jobs=N_JOBS), | |
| 117 imblearn.under_sampling.OneSidedSelection(random_state=0, n_jobs=N_JOBS), | |
| 118 imblearn.under_sampling.RandomUnderSampler(random_state=0), | |
| 119 imblearn.under_sampling.TomekLinks(random_state=0, n_jobs=N_JOBS), | |
| 120 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | |
| 121 imblearn.over_sampling.RandomOverSampler(random_state=0), | |
| 122 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | |
| 123 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | |
| 124 imblearn.over_sampling.BorderlineSMOTE(random_state=0, n_jobs=N_JOBS), | |
| 125 imblearn.over_sampling.SMOTENC(categorical_features=[], random_state=0, n_jobs=N_JOBS), | |
| 126 imblearn.combine.SMOTEENN(random_state=0), | |
| 127 imblearn.combine.SMOTETomek(random_state=0), | |
| 128 ) | |
| 129 newlist = [] | |
| 130 for obj in ev: | |
| 131 if obj is None: | |
| 132 newlist.append(None) | |
| 133 elif obj == "all_0": | |
| 134 newlist.extend(preprocessings[0:35]) | |
| 135 elif obj == "sk_prep_all": # no KernalCenter() | |
| 136 newlist.extend(preprocessings[0:7]) | |
| 137 elif obj == "fs_all": | |
| 138 newlist.extend(preprocessings[7:14]) | |
| 139 elif obj == "decomp_all": | |
| 140 newlist.extend(preprocessings[14:25]) | |
| 141 elif obj == "k_appr_all": | |
| 142 newlist.extend(preprocessings[25:29]) | |
| 143 elif obj == "reb_all": | |
| 144 newlist.extend(preprocessings[30:35]) | |
| 145 elif obj == "imb_all": | |
| 146 newlist.extend(preprocessings[35:54]) | |
| 147 elif type(obj) is int and -1 < obj < len(preprocessings): | |
| 148 newlist.append(preprocessings[obj]) | |
| 149 elif hasattr(obj, "get_params"): # user uploaded object | |
| 150 if "n_jobs" in obj.get_params(): | |
| 151 newlist.append(obj.set_params(n_jobs=N_JOBS)) | |
| 152 else: | |
| 153 newlist.append(obj) | |
| 154 else: | |
| 155 sys.exit("Unsupported estimator type: %r" % (obj)) | |
| 156 | |
| 157 search_params[param_name] = newlist | |
| 158 | |
| 159 return search_params | |
| 160 | |
| 161 | |
| 162 def _handle_X_y( | |
| 163 estimator, | |
| 164 params, | |
| 165 infile1, | |
| 166 infile2, | |
| 167 loaded_df={}, | |
| 168 ref_seq=None, | |
| 169 intervals=None, | |
| 170 targets=None, | |
| 171 fasta_path=None, | |
| 172 ): | |
| 173 """read inputs | |
| 174 | |
| 175 Params | |
| 176 ------- | |
| 177 estimator : estimator object | |
| 178 params : dict | |
| 179 Galaxy tool parameter inputs | |
| 180 infile1 : str | |
| 181 File path to dataset containing features | |
| 182 infile2 : str | |
| 183 File path to dataset containing target values | |
| 184 loaded_df : dict | |
| 185 Contains loaded DataFrame objects with file path as keys | |
| 186 ref_seq : str | |
| 187 File path to dataset containing genome sequence file | |
| 188 interval : str | |
| 189 File path to dataset containing interval file | |
| 190 targets : str | |
| 191 File path to dataset compressed target bed file | |
| 192 fasta_path : str | |
| 193 File path to dataset containing fasta file | |
| 194 | |
| 195 | |
| 196 Returns | |
| 197 ------- | |
| 198 estimator : estimator object after setting new attributes | |
| 199 X : numpy array | |
| 200 y : numpy array | |
| 201 """ | |
| 202 estimator_params = estimator.get_params() | |
| 203 | |
| 204 input_type = params["input_options"]["selected_input"] | |
| 205 # tabular input | |
| 206 if input_type == "tabular": | |
| 207 header = "infer" if params["input_options"]["header1"] else None | |
| 208 column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] | |
| 209 if column_option in [ | |
| 210 "by_index_number", | |
| 211 "all_but_by_index_number", | |
| 212 "by_header_name", | |
| 213 "all_but_by_header_name", | |
| 214 ]: | |
| 215 c = params["input_options"]["column_selector_options_1"]["col1"] | |
| 216 else: | |
| 217 c = None | |
| 218 | |
| 219 df_key = infile1 + repr(header) | |
| 220 | |
| 221 if df_key in loaded_df: | |
| 222 infile1 = loaded_df[df_key] | |
| 223 | |
| 224 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) | |
| 225 loaded_df[df_key] = df | |
| 226 | |
| 227 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 228 # sparse input | |
| 229 elif input_type == "sparse": | |
| 230 X = mmread(open(infile1, "r")) | |
| 231 | |
| 232 # fasta_file input | |
| 233 elif input_type == "seq_fasta": | |
| 234 pyfaidx = get_module("pyfaidx") | |
| 235 sequences = pyfaidx.Fasta(fasta_path) | |
| 236 n_seqs = len(sequences.keys()) | |
| 237 X = np.arange(n_seqs)[:, np.newaxis] | |
| 238 for param in estimator_params.keys(): | |
| 239 if param.endswith("fasta_path"): | |
| 240 estimator.set_params(**{param: fasta_path}) | |
| 241 break | |
| 242 else: | |
| 243 raise ValueError( | |
| 244 "The selected estimator doesn't support " | |
| 245 "fasta file input! Please consider using " | |
| 246 "KerasGBatchClassifier with " | |
| 247 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
| 248 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
| 249 "in pipeline!" | |
| 250 ) | |
| 251 | |
| 252 elif input_type == "refseq_and_interval": | |
| 253 path_params = { | |
| 254 "data_batch_generator__ref_genome_path": ref_seq, | |
| 255 "data_batch_generator__intervals_path": intervals, | |
| 256 "data_batch_generator__target_path": targets, | |
| 257 } | |
| 258 estimator.set_params(**path_params) | |
| 259 n_intervals = sum(1 for line in open(intervals)) | |
| 260 X = np.arange(n_intervals)[:, np.newaxis] | |
| 261 | |
| 262 # Get target y | |
| 263 header = "infer" if params["input_options"]["header2"] else None | |
| 264 column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] | |
| 265 if column_option in [ | |
| 266 "by_index_number", | |
| 267 "all_but_by_index_number", | |
| 268 "by_header_name", | |
| 269 "all_but_by_header_name", | |
| 270 ]: | |
| 271 c = params["input_options"]["column_selector_options_2"]["col2"] | |
| 272 else: | |
| 273 c = None | |
| 274 | |
| 275 df_key = infile2 + repr(header) | |
| 276 if df_key in loaded_df: | |
| 277 infile2 = loaded_df[df_key] | |
| 278 else: | |
| 279 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | |
| 280 loaded_df[df_key] = infile2 | |
| 281 | |
| 282 y = read_columns(infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True) | |
| 283 if len(y.shape) == 2 and y.shape[1] == 1: | |
| 284 y = y.ravel() | |
| 285 if input_type == "refseq_and_interval": | |
| 286 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) | |
| 287 y = None | |
| 288 # end y | |
| 289 | |
| 290 return estimator, X, y | |
| 291 | |
| 292 | |
| 293 def _do_outer_cv(searcher, X, y, outer_cv, scoring, error_score="raise", outfile=None): | |
| 294 """Do outer cross-validation for nested CV | |
| 295 | |
| 296 Parameters | |
| 297 ---------- | |
| 298 searcher : object | |
| 299 SearchCV object | |
| 300 X : numpy array | |
| 301 Containing features | |
| 302 y : numpy array | |
| 303 Target values or labels | |
| 304 outer_cv : int or CV splitter | |
| 305 Control the cv splitting | |
| 306 scoring : object | |
| 307 Scorer | |
| 308 error_score: str, float or numpy float | |
| 309 Whether to raise fit error or return an value | |
| 310 outfile : str | |
| 311 File path to store the restuls | |
| 312 """ | |
| 313 if error_score == "raise": | |
| 314 rval = cross_validate( | |
| 315 searcher, | |
| 316 X, | |
| 317 y, | |
| 318 scoring=scoring, | |
| 319 cv=outer_cv, | |
| 320 n_jobs=N_JOBS, | |
| 321 verbose=0, | |
| 322 error_score=error_score, | |
| 323 ) | |
| 324 else: | |
| 325 warnings.simplefilter("always", FitFailedWarning) | |
| 326 with warnings.catch_warnings(record=True) as w: | |
| 327 try: | |
| 328 rval = cross_validate( | |
| 329 searcher, | |
| 330 X, | |
| 331 y, | |
| 332 scoring=scoring, | |
| 333 cv=outer_cv, | |
| 334 n_jobs=N_JOBS, | |
| 335 verbose=0, | |
| 336 error_score=error_score, | |
| 337 ) | |
| 338 except ValueError: | |
| 339 pass | |
| 340 for warning in w: | |
| 341 print(repr(warning.message)) | |
| 342 | |
| 343 keys = list(rval.keys()) | |
| 344 for k in keys: | |
| 345 if k.startswith("test"): | |
| 346 rval["mean_" + k] = np.mean(rval[k]) | |
| 347 rval["std_" + k] = np.std(rval[k]) | |
| 348 if k.endswith("time"): | |
| 349 rval.pop(k) | |
| 350 rval = pd.DataFrame(rval) | |
| 351 rval = rval[sorted(rval.columns)] | |
| 352 rval.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False) | |
| 353 | |
| 354 | |
| 355 def _do_train_test_split_val( | |
| 356 searcher, | |
| 357 X, | |
| 358 y, | |
| 359 params, | |
| 360 error_score="raise", | |
| 361 primary_scoring=None, | |
| 362 groups=None, | |
| 363 outfile=None, | |
| 364 ): | |
| 365 """do train test split, searchCV validates on the train and then use | |
| 366 the best_estimator_ to evaluate on the test | |
| 367 | |
| 368 Returns | |
| 369 -------- | |
| 370 Fitted SearchCV object | |
| 371 """ | |
| 372 train_test_split = try_get_attr("galaxy_ml.model_validations", "train_test_split") | |
| 373 split_options = params["outer_split"] | |
| 374 | |
| 375 # splits | |
| 376 if split_options["shuffle"] == "stratified": | |
| 377 split_options["labels"] = y | |
| 378 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
| 379 elif split_options["shuffle"] == "group": | |
| 380 if groups is None: | |
| 381 raise ValueError("No group based CV option was choosen for " "group shuffle!") | |
| 382 split_options["labels"] = groups | |
| 383 if y is None: | |
| 384 X, X_test, groups, _ = train_test_split(X, groups, **split_options) | |
| 385 else: | |
| 386 X, X_test, y, y_test, groups, _ = train_test_split(X, y, groups, **split_options) | |
| 387 else: | |
| 388 if split_options["shuffle"] == "None": | |
| 389 split_options["shuffle"] = None | |
| 390 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
| 391 | |
| 392 if error_score == "raise": | |
| 393 searcher.fit(X, y, groups=groups) | |
| 394 else: | |
| 395 warnings.simplefilter("always", FitFailedWarning) | |
| 396 with warnings.catch_warnings(record=True) as w: | |
| 397 try: | |
| 398 searcher.fit(X, y, groups=groups) | |
| 399 except ValueError: | |
| 400 pass | |
| 401 for warning in w: | |
| 402 print(repr(warning.message)) | |
| 403 | |
| 404 scorer_ = searcher.scorer_ | |
| 405 if isinstance(scorer_, collections.Mapping): | |
| 406 is_multimetric = True | |
| 407 else: | |
| 408 is_multimetric = False | |
| 409 | |
| 410 best_estimator_ = getattr(searcher, "best_estimator_") | |
| 411 | |
| 412 # TODO Solve deep learning models in pipeline | |
| 413 if best_estimator_.__class__.__name__ == "KerasGBatchClassifier": | |
| 414 test_score = best_estimator_.evaluate(X_test, scorer=scorer_, is_multimetric=is_multimetric) | |
| 415 else: | |
| 416 test_score = _score(best_estimator_, X_test, y_test, scorer_, is_multimetric=is_multimetric) | |
| 417 | |
| 418 if not is_multimetric: | |
| 419 test_score = {primary_scoring: test_score} | |
| 420 for key, value in test_score.items(): | |
| 421 test_score[key] = [value] | |
| 422 result_df = pd.DataFrame(test_score) | |
| 423 result_df.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False) | |
| 424 | |
| 425 return searcher | |
| 426 | |
| 427 | |
| 428 def main( | |
| 429 inputs, | |
| 430 infile_estimator, | |
| 431 infile1, | |
| 432 infile2, | |
| 433 outfile_result, | |
| 434 outfile_object=None, | |
| 435 outfile_weights=None, | |
| 436 groups=None, | |
| 437 ref_seq=None, | |
| 438 intervals=None, | |
| 439 targets=None, | |
| 440 fasta_path=None, | |
| 441 ): | |
| 442 """ | |
| 443 Parameter | |
| 444 --------- | |
| 445 inputs : str | |
| 446 File path to galaxy tool parameter | |
| 447 | |
| 448 infile_estimator : str | |
| 449 File path to estimator | |
| 450 | |
| 451 infile1 : str | |
| 452 File path to dataset containing features | |
| 453 | |
| 454 infile2 : str | |
| 455 File path to dataset containing target values | |
| 456 | |
| 457 outfile_result : str | |
| 458 File path to save the results, either cv_results or test result | |
| 459 | |
| 460 outfile_object : str, optional | |
| 461 File path to save searchCV object | |
| 462 | |
| 463 outfile_weights : str, optional | |
| 464 File path to save model weights | |
| 465 | |
| 466 groups : str | |
| 467 File path to dataset containing groups labels | |
| 468 | |
| 469 ref_seq : str | |
| 470 File path to dataset containing genome sequence file | |
| 471 | |
| 472 intervals : str | |
| 473 File path to dataset containing interval file | |
| 474 | |
| 475 targets : str | |
| 476 File path to dataset compressed target bed file | |
| 477 | |
| 478 fasta_path : str | |
| 479 File path to dataset containing fasta file | |
| 480 """ | |
| 481 warnings.simplefilter("ignore") | |
| 482 | |
| 483 # store read dataframe object | |
| 484 loaded_df = {} | |
| 485 | |
| 486 with open(inputs, "r") as param_handler: | |
| 487 params = json.load(param_handler) | |
| 488 | |
| 489 # Override the refit parameter | |
| 490 params["search_schemes"]["options"]["refit"] = True if params["save"] != "nope" else False | |
| 491 | |
| 492 with open(infile_estimator, "rb") as estimator_handler: | |
| 493 estimator = load_model(estimator_handler) | |
| 494 | |
| 495 optimizer = params["search_schemes"]["selected_search_scheme"] | |
| 496 optimizer = getattr(model_selection, optimizer) | |
| 497 | |
| 498 # handle gridsearchcv options | |
| 499 options = params["search_schemes"]["options"] | |
| 500 | |
| 501 if groups: | |
| 502 header = "infer" if (options["cv_selector"]["groups_selector"]["header_g"]) else None | |
| 503 column_option = options["cv_selector"]["groups_selector"]["column_selector_options_g"][ | |
| 504 "selected_column_selector_option_g" | |
| 505 ] | |
| 506 if column_option in [ | |
| 507 "by_index_number", | |
| 508 "all_but_by_index_number", | |
| 509 "by_header_name", | |
| 510 "all_but_by_header_name", | |
| 511 ]: | |
| 512 c = options["cv_selector"]["groups_selector"]["column_selector_options_g"]["col_g"] | |
| 513 else: | |
| 514 c = None | |
| 515 | |
| 516 df_key = groups + repr(header) | |
| 517 | |
| 518 groups = pd.read_csv(groups, sep="\t", header=header, parse_dates=True) | |
| 519 loaded_df[df_key] = groups | |
| 520 | |
| 521 groups = read_columns( | |
| 522 groups, | |
| 523 c=c, | |
| 524 c_option=column_option, | |
| 525 sep="\t", | |
| 526 header=header, | |
| 527 parse_dates=True, | |
| 528 ) | |
| 529 groups = groups.ravel() | |
| 530 options["cv_selector"]["groups_selector"] = groups | |
| 531 | |
| 532 splitter, groups = get_cv(options.pop("cv_selector")) | |
| 533 options["cv"] = splitter | |
| 534 primary_scoring = options["scoring"]["primary_scoring"] | |
| 535 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) | |
| 536 # Check if secondary_scoring is specified | |
| 537 secondary_scoring = options["scoring"].get("secondary_scoring", None) | |
| 538 if secondary_scoring is not None: | |
| 539 # If secondary_scoring is specified, convert the list into comman separated string | |
| 540 options["scoring"]["secondary_scoring"] = ",".join(options["scoring"]["secondary_scoring"]) | |
| 541 options["scoring"] = get_scoring(options["scoring"]) | |
| 542 if options["error_score"]: | |
| 543 options["error_score"] = "raise" | |
| 544 else: | |
| 545 options["error_score"] = np.NaN | |
| 546 if options["refit"] and isinstance(options["scoring"], dict): | |
| 547 options["refit"] = primary_scoring | |
| 548 if "pre_dispatch" in options and options["pre_dispatch"] == "": | |
| 549 options["pre_dispatch"] = None | |
| 550 | |
| 551 params_builder = params["search_schemes"]["search_params_builder"] | |
| 552 param_grid = _eval_search_params(params_builder) | |
| 553 | |
| 554 estimator = clean_params(estimator) | |
| 555 | |
| 556 # save the SearchCV object without fit | |
| 557 if params["save"] == "save_no_fit": | |
| 558 searcher = optimizer(estimator, param_grid, **options) | |
| 559 print(searcher) | |
| 560 with open(outfile_object, "wb") as output_handler: | |
| 561 pickle.dump(searcher, output_handler, pickle.HIGHEST_PROTOCOL) | |
| 562 return 0 | |
| 563 | |
| 564 # read inputs and loads new attributes, like paths | |
| 565 estimator, X, y = _handle_X_y( | |
| 566 estimator, | |
| 567 params, | |
| 568 infile1, | |
| 569 infile2, | |
| 570 loaded_df=loaded_df, | |
| 571 ref_seq=ref_seq, | |
| 572 intervals=intervals, | |
| 573 targets=targets, | |
| 574 fasta_path=fasta_path, | |
| 575 ) | |
| 576 | |
| 577 # cache iraps_core fits could increase search speed significantly | |
| 578 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
| 579 main_est = get_main_estimator(estimator) | |
| 580 if main_est.__class__.__name__ == "IRAPSClassifier": | |
| 581 main_est.set_params(memory=memory) | |
| 582 | |
| 583 searcher = optimizer(estimator, param_grid, **options) | |
| 584 | |
| 585 split_mode = params["outer_split"].pop("split_mode") | |
| 586 | |
| 587 if split_mode == "nested_cv": | |
| 588 # make sure refit is choosen | |
| 589 # this could be True for sklearn models, but not the case for | |
| 590 # deep learning models | |
| 591 if not options["refit"] and not all(hasattr(estimator, attr) for attr in ("config", "model_type")): | |
| 592 warnings.warn("Refit is change to `True` for nested validation!") | |
| 593 setattr(searcher, "refit", True) | |
| 594 | |
| 595 outer_cv, _ = get_cv(params["outer_split"]["cv_selector"]) | |
| 596 # nested CV, outer cv using cross_validate | |
| 597 if options["error_score"] == "raise": | |
| 598 rval = cross_validate( | |
| 599 searcher, | |
| 600 X, | |
| 601 y, | |
| 602 scoring=options["scoring"], | |
| 603 cv=outer_cv, | |
| 604 n_jobs=N_JOBS, | |
| 605 verbose=options["verbose"], | |
| 606 return_estimator=(params["save"] == "save_estimator"), | |
| 607 error_score=options["error_score"], | |
| 608 return_train_score=True, | |
| 609 ) | |
| 610 else: | |
| 611 warnings.simplefilter("always", FitFailedWarning) | |
| 612 with warnings.catch_warnings(record=True) as w: | |
| 613 try: | |
| 614 rval = cross_validate( | |
| 615 searcher, | |
| 616 X, | |
| 617 y, | |
| 618 scoring=options["scoring"], | |
| 619 cv=outer_cv, | |
| 620 n_jobs=N_JOBS, | |
| 621 verbose=options["verbose"], | |
| 622 return_estimator=(params["save"] == "save_estimator"), | |
| 623 error_score=options["error_score"], | |
| 624 return_train_score=True, | |
| 625 ) | |
| 626 except ValueError: | |
| 627 pass | |
| 628 for warning in w: | |
| 629 print(repr(warning.message)) | |
| 630 | |
| 631 fitted_searchers = rval.pop("estimator", []) | |
| 632 if fitted_searchers: | |
| 633 import os | |
| 634 | |
| 635 pwd = os.getcwd() | |
| 636 save_dir = os.path.join(pwd, "cv_results_in_folds") | |
| 637 try: | |
| 638 os.mkdir(save_dir) | |
| 639 for idx, obj in enumerate(fitted_searchers): | |
| 640 target_name = "cv_results_" + "_" + "split%d" % idx | |
| 641 target_path = os.path.join(pwd, save_dir, target_name) | |
| 642 cv_results_ = getattr(obj, "cv_results_", None) | |
| 643 if not cv_results_: | |
| 644 print("%s is not available" % target_name) | |
| 645 continue | |
| 646 cv_results_ = pd.DataFrame(cv_results_) | |
| 647 cv_results_ = cv_results_[sorted(cv_results_.columns)] | |
| 648 cv_results_.to_csv(target_path, sep="\t", header=True, index=False) | |
| 649 except Exception as e: | |
| 650 print(e) | |
| 651 finally: | |
| 652 del os | |
| 653 | |
| 654 keys = list(rval.keys()) | |
| 655 for k in keys: | |
| 656 if k.startswith("test"): | |
| 657 rval["mean_" + k] = np.mean(rval[k]) | |
| 658 rval["std_" + k] = np.std(rval[k]) | |
| 659 if k.endswith("time"): | |
| 660 rval.pop(k) | |
| 661 rval = pd.DataFrame(rval) | |
| 662 rval = rval[sorted(rval.columns)] | |
| 663 rval.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) | |
| 664 # deprecate train test split mode | |
| 665 """searcher = _do_train_test_split_val( | |
| 666 searcher, X, y, params, | |
| 667 primary_scoring=primary_scoring, | |
| 668 error_score=options['error_score'], | |
| 669 groups=groups, | |
| 670 outfile=outfile_result)""" | |
| 671 return 0 | |
| 672 | |
| 673 # no outer split | |
| 674 else: | |
| 675 searcher.set_params(n_jobs=N_JOBS) | |
| 676 if options["error_score"] == "raise": | |
| 677 searcher.fit(X, y, groups=groups) | |
| 678 else: | |
| 679 warnings.simplefilter("always", FitFailedWarning) | |
| 680 with warnings.catch_warnings(record=True) as w: | |
| 681 try: | |
| 682 searcher.fit(X, y, groups=groups) | |
| 683 except ValueError: | |
| 684 pass | |
| 685 for warning in w: | |
| 686 print(repr(warning.message)) | |
| 687 | |
| 688 cv_results = pd.DataFrame(searcher.cv_results_) | |
| 689 cv_results = cv_results[sorted(cv_results.columns)] | |
| 690 cv_results.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) | |
| 691 | |
| 692 memory.clear(warn=False) | |
| 693 | |
| 694 # output best estimator, and weights if applicable | |
| 695 if outfile_object: | |
| 696 best_estimator_ = getattr(searcher, "best_estimator_", None) | |
| 697 if not best_estimator_: | |
| 698 warnings.warn( | |
| 699 "GridSearchCV object has no attribute " | |
| 700 "'best_estimator_', because either it's " | |
| 701 "nested gridsearch or `refit` is False!" | |
| 702 ) | |
| 703 return | |
| 704 | |
| 705 # clean prams | |
| 706 best_estimator_ = clean_params(best_estimator_) | |
| 707 | |
| 708 main_est = get_main_estimator(best_estimator_) | |
| 709 | |
| 710 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): | |
| 711 if outfile_weights: | |
| 712 main_est.save_weights(outfile_weights) | |
| 713 del main_est.model_ | |
| 714 del main_est.fit_params | |
| 715 del main_est.model_class_ | |
| 716 del main_est.validation_data | |
| 717 if getattr(main_est, "data_generator_", None): | |
| 718 del main_est.data_generator_ | |
| 719 | |
| 720 with open(outfile_object, "wb") as output_handler: | |
| 721 print("Best estimator is saved: %s " % repr(best_estimator_)) | |
| 722 pickle.dump(best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL) | |
| 723 | |
| 724 | |
| 725 if __name__ == "__main__": | |
| 726 aparser = argparse.ArgumentParser() | |
| 727 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 728 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
| 729 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 730 aparser.add_argument("-y", "--infile2", dest="infile2") | |
| 731 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
| 732 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
| 733 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
| 734 aparser.add_argument("-g", "--groups", dest="groups") | |
| 735 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
| 736 aparser.add_argument("-b", "--intervals", dest="intervals") | |
| 737 aparser.add_argument("-t", "--targets", dest="targets") | |
| 738 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
| 739 args = aparser.parse_args() | |
| 740 | |
| 741 main( | |
| 742 args.inputs, | |
| 743 args.infile_estimator, | |
| 744 args.infile1, | |
| 745 args.infile2, | |
| 746 args.outfile_result, | |
| 747 outfile_object=args.outfile_object, | |
| 748 outfile_weights=args.outfile_weights, | |
| 749 groups=args.groups, | |
| 750 ref_seq=args.ref_seq, | |
| 751 intervals=args.intervals, | |
| 752 targets=args.targets, | |
| 753 fasta_path=args.fasta_path, | |
| 754 ) |
