Mercurial > repos > bgruening > sklearn_to_categorical
comparison train_test_eval.py @ 0:59e8b4328c82 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 208a8d348e7c7a182cfbe1b6f17868146428a7e2"
| author | bgruening |
|---|---|
| date | Tue, 13 Apr 2021 22:40:10 +0000 |
| parents | |
| children | f93f0cdbaf18 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:59e8b4328c82 |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import os | |
| 4 import pickle | |
| 5 import warnings | |
| 6 from itertools import chain | |
| 7 | |
| 8 import joblib | |
| 9 import numpy as np | |
| 10 import pandas as pd | |
| 11 from galaxy_ml.model_validations import train_test_split | |
| 12 from galaxy_ml.utils import ( | |
| 13 get_module, | |
| 14 get_scoring, | |
| 15 load_model, | |
| 16 read_columns, | |
| 17 SafeEval, | |
| 18 try_get_attr, | |
| 19 ) | |
| 20 from scipy.io import mmread | |
| 21 from sklearn import pipeline | |
| 22 from sklearn.metrics.scorer import _check_multimetric_scoring | |
| 23 from sklearn.model_selection import _search, _validation | |
| 24 from sklearn.model_selection._validation import _score | |
| 25 from sklearn.utils import indexable, safe_indexing | |
| 26 | |
| 27 | |
| 28 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | |
| 29 setattr(_search, "_fit_and_score", _fit_and_score) | |
| 30 setattr(_validation, "_fit_and_score", _fit_and_score) | |
| 31 | |
| 32 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) | |
| 33 CACHE_DIR = os.path.join(os.getcwd(), "cached") | |
| 34 del os | |
| 35 NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") | |
| 36 ALLOWED_CALLBACKS = ( | |
| 37 "EarlyStopping", | |
| 38 "TerminateOnNaN", | |
| 39 "ReduceLROnPlateau", | |
| 40 "CSVLogger", | |
| 41 "None", | |
| 42 ) | |
| 43 | |
| 44 | |
| 45 def _eval_swap_params(params_builder): | |
| 46 swap_params = {} | |
| 47 | |
| 48 for p in params_builder["param_set"]: | |
| 49 swap_value = p["sp_value"].strip() | |
| 50 if swap_value == "": | |
| 51 continue | |
| 52 | |
| 53 param_name = p["sp_name"] | |
| 54 if param_name.lower().endswith(NON_SEARCHABLE): | |
| 55 warnings.warn( | |
| 56 "Warning: `%s` is not eligible for search and was " | |
| 57 "omitted!" % param_name | |
| 58 ) | |
| 59 continue | |
| 60 | |
| 61 if not swap_value.startswith(":"): | |
| 62 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
| 63 ev = safe_eval(swap_value) | |
| 64 else: | |
| 65 # Have `:` before search list, asks for estimator evaluatio | |
| 66 safe_eval_es = SafeEval(load_estimators=True) | |
| 67 swap_value = swap_value[1:].strip() | |
| 68 # TODO maybe add regular express check | |
| 69 ev = safe_eval_es(swap_value) | |
| 70 | |
| 71 swap_params[param_name] = ev | |
| 72 | |
| 73 return swap_params | |
| 74 | |
| 75 | |
| 76 def train_test_split_none(*arrays, **kwargs): | |
| 77 """extend train_test_split to take None arrays | |
| 78 and support split by group names. | |
| 79 """ | |
| 80 nones = [] | |
| 81 new_arrays = [] | |
| 82 for idx, arr in enumerate(arrays): | |
| 83 if arr is None: | |
| 84 nones.append(idx) | |
| 85 else: | |
| 86 new_arrays.append(arr) | |
| 87 | |
| 88 if kwargs["shuffle"] == "None": | |
| 89 kwargs["shuffle"] = None | |
| 90 | |
| 91 group_names = kwargs.pop("group_names", None) | |
| 92 | |
| 93 if group_names is not None and group_names.strip(): | |
| 94 group_names = [name.strip() for name in group_names.split(",")] | |
| 95 new_arrays = indexable(*new_arrays) | |
| 96 groups = kwargs["labels"] | |
| 97 n_samples = new_arrays[0].shape[0] | |
| 98 index_arr = np.arange(n_samples) | |
| 99 test = index_arr[np.isin(groups, group_names)] | |
| 100 train = index_arr[~np.isin(groups, group_names)] | |
| 101 rval = list( | |
| 102 chain.from_iterable( | |
| 103 (safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays | |
| 104 ) | |
| 105 ) | |
| 106 else: | |
| 107 rval = train_test_split(*new_arrays, **kwargs) | |
| 108 | |
| 109 for pos in nones: | |
| 110 rval[pos * 2: 2] = [None, None] | |
| 111 | |
| 112 return rval | |
| 113 | |
| 114 | |
| 115 def main( | |
| 116 inputs, | |
| 117 infile_estimator, | |
| 118 infile1, | |
| 119 infile2, | |
| 120 outfile_result, | |
| 121 outfile_object=None, | |
| 122 outfile_weights=None, | |
| 123 groups=None, | |
| 124 ref_seq=None, | |
| 125 intervals=None, | |
| 126 targets=None, | |
| 127 fasta_path=None, | |
| 128 ): | |
| 129 """ | |
| 130 Parameter | |
| 131 --------- | |
| 132 inputs : str | |
| 133 File path to galaxy tool parameter | |
| 134 | |
| 135 infile_estimator : str | |
| 136 File path to estimator | |
| 137 | |
| 138 infile1 : str | |
| 139 File path to dataset containing features | |
| 140 | |
| 141 infile2 : str | |
| 142 File path to dataset containing target values | |
| 143 | |
| 144 outfile_result : str | |
| 145 File path to save the results, either cv_results or test result | |
| 146 | |
| 147 outfile_object : str, optional | |
| 148 File path to save searchCV object | |
| 149 | |
| 150 outfile_weights : str, optional | |
| 151 File path to save deep learning model weights | |
| 152 | |
| 153 groups : str | |
| 154 File path to dataset containing groups labels | |
| 155 | |
| 156 ref_seq : str | |
| 157 File path to dataset containing genome sequence file | |
| 158 | |
| 159 intervals : str | |
| 160 File path to dataset containing interval file | |
| 161 | |
| 162 targets : str | |
| 163 File path to dataset compressed target bed file | |
| 164 | |
| 165 fasta_path : str | |
| 166 File path to dataset containing fasta file | |
| 167 """ | |
| 168 warnings.simplefilter("ignore") | |
| 169 | |
| 170 with open(inputs, "r") as param_handler: | |
| 171 params = json.load(param_handler) | |
| 172 | |
| 173 # load estimator | |
| 174 with open(infile_estimator, "rb") as estimator_handler: | |
| 175 estimator = load_model(estimator_handler) | |
| 176 | |
| 177 # swap hyperparameter | |
| 178 swapping = params["experiment_schemes"]["hyperparams_swapping"] | |
| 179 swap_params = _eval_swap_params(swapping) | |
| 180 estimator.set_params(**swap_params) | |
| 181 | |
| 182 estimator_params = estimator.get_params() | |
| 183 | |
| 184 # store read dataframe object | |
| 185 loaded_df = {} | |
| 186 | |
| 187 input_type = params["input_options"]["selected_input"] | |
| 188 # tabular input | |
| 189 if input_type == "tabular": | |
| 190 header = "infer" if params["input_options"]["header1"] else None | |
| 191 column_option = params["input_options"]["column_selector_options_1"][ | |
| 192 "selected_column_selector_option" | |
| 193 ] | |
| 194 if column_option in [ | |
| 195 "by_index_number", | |
| 196 "all_but_by_index_number", | |
| 197 "by_header_name", | |
| 198 "all_but_by_header_name", | |
| 199 ]: | |
| 200 c = params["input_options"]["column_selector_options_1"]["col1"] | |
| 201 else: | |
| 202 c = None | |
| 203 | |
| 204 df_key = infile1 + repr(header) | |
| 205 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) | |
| 206 loaded_df[df_key] = df | |
| 207 | |
| 208 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 209 # sparse input | |
| 210 elif input_type == "sparse": | |
| 211 X = mmread(open(infile1, "r")) | |
| 212 | |
| 213 # fasta_file input | |
| 214 elif input_type == "seq_fasta": | |
| 215 pyfaidx = get_module("pyfaidx") | |
| 216 sequences = pyfaidx.Fasta(fasta_path) | |
| 217 n_seqs = len(sequences.keys()) | |
| 218 X = np.arange(n_seqs)[:, np.newaxis] | |
| 219 for param in estimator_params.keys(): | |
| 220 if param.endswith("fasta_path"): | |
| 221 estimator.set_params(**{param: fasta_path}) | |
| 222 break | |
| 223 else: | |
| 224 raise ValueError( | |
| 225 "The selected estimator doesn't support " | |
| 226 "fasta file input! Please consider using " | |
| 227 "KerasGBatchClassifier with " | |
| 228 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
| 229 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
| 230 "in pipeline!" | |
| 231 ) | |
| 232 | |
| 233 elif input_type == "refseq_and_interval": | |
| 234 path_params = { | |
| 235 "data_batch_generator__ref_genome_path": ref_seq, | |
| 236 "data_batch_generator__intervals_path": intervals, | |
| 237 "data_batch_generator__target_path": targets, | |
| 238 } | |
| 239 estimator.set_params(**path_params) | |
| 240 n_intervals = sum(1 for line in open(intervals)) | |
| 241 X = np.arange(n_intervals)[:, np.newaxis] | |
| 242 | |
| 243 # Get target y | |
| 244 header = "infer" if params["input_options"]["header2"] else None | |
| 245 column_option = params["input_options"]["column_selector_options_2"][ | |
| 246 "selected_column_selector_option2" | |
| 247 ] | |
| 248 if column_option in [ | |
| 249 "by_index_number", | |
| 250 "all_but_by_index_number", | |
| 251 "by_header_name", | |
| 252 "all_but_by_header_name", | |
| 253 ]: | |
| 254 c = params["input_options"]["column_selector_options_2"]["col2"] | |
| 255 else: | |
| 256 c = None | |
| 257 | |
| 258 df_key = infile2 + repr(header) | |
| 259 if df_key in loaded_df: | |
| 260 infile2 = loaded_df[df_key] | |
| 261 else: | |
| 262 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | |
| 263 loaded_df[df_key] = infile2 | |
| 264 | |
| 265 y = read_columns(infile2, | |
| 266 c=c, | |
| 267 c_option=column_option, | |
| 268 sep='\t', | |
| 269 header=header, | |
| 270 parse_dates=True) | |
| 271 if len(y.shape) == 2 and y.shape[1] == 1: | |
| 272 y = y.ravel() | |
| 273 if input_type == "refseq_and_interval": | |
| 274 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) | |
| 275 y = None | |
| 276 # end y | |
| 277 | |
| 278 # load groups | |
| 279 if groups: | |
| 280 groups_selector = ( | |
| 281 params["experiment_schemes"]["test_split"]["split_algos"] | |
| 282 ).pop("groups_selector") | |
| 283 | |
| 284 header = "infer" if groups_selector["header_g"] else None | |
| 285 column_option = groups_selector["column_selector_options_g"][ | |
| 286 "selected_column_selector_option_g" | |
| 287 ] | |
| 288 if column_option in [ | |
| 289 "by_index_number", | |
| 290 "all_but_by_index_number", | |
| 291 "by_header_name", | |
| 292 "all_but_by_header_name", | |
| 293 ]: | |
| 294 c = groups_selector["column_selector_options_g"]["col_g"] | |
| 295 else: | |
| 296 c = None | |
| 297 | |
| 298 df_key = groups + repr(header) | |
| 299 if df_key in loaded_df: | |
| 300 groups = loaded_df[df_key] | |
| 301 | |
| 302 groups = read_columns(groups, | |
| 303 c=c, | |
| 304 c_option=column_option, | |
| 305 sep='\t', | |
| 306 header=header, | |
| 307 parse_dates=True) | |
| 308 groups = groups.ravel() | |
| 309 | |
| 310 # del loaded_df | |
| 311 del loaded_df | |
| 312 | |
| 313 # handle memory | |
| 314 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
| 315 # cache iraps_core fits could increase search speed significantly | |
| 316 if estimator.__class__.__name__ == "IRAPSClassifier": | |
| 317 estimator.set_params(memory=memory) | |
| 318 else: | |
| 319 # For iraps buried in pipeline | |
| 320 new_params = {} | |
| 321 for p, v in estimator_params.items(): | |
| 322 if p.endswith("memory"): | |
| 323 # for case of `__irapsclassifier__memory` | |
| 324 if len(p) > 8 and p[:-8].endswith("irapsclassifier"): | |
| 325 # cache iraps_core fits could increase search | |
| 326 # speed significantly | |
| 327 new_params[p] = memory | |
| 328 # security reason, we don't want memory being | |
| 329 # modified unexpectedly | |
| 330 elif v: | |
| 331 new_params[p] = None | |
| 332 # handle n_jobs | |
| 333 elif p.endswith("n_jobs"): | |
| 334 # For now, 1 CPU is suggested for iprasclassifier | |
| 335 if len(p) > 8 and p[:-8].endswith("irapsclassifier"): | |
| 336 new_params[p] = 1 | |
| 337 else: | |
| 338 new_params[p] = N_JOBS | |
| 339 # for security reason, types of callback are limited | |
| 340 elif p.endswith("callbacks"): | |
| 341 for cb in v: | |
| 342 cb_type = cb["callback_selection"]["callback_type"] | |
| 343 if cb_type not in ALLOWED_CALLBACKS: | |
| 344 raise ValueError("Prohibited callback type: %s!" % cb_type) | |
| 345 | |
| 346 estimator.set_params(**new_params) | |
| 347 | |
| 348 # handle scorer, convert to scorer dict | |
| 349 # Check if scoring is specified | |
| 350 scoring = params["experiment_schemes"]["metrics"].get("scoring", None) | |
| 351 if scoring is not None: | |
| 352 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) | |
| 353 # Check if secondary_scoring is specified | |
| 354 secondary_scoring = scoring.get("secondary_scoring", None) | |
| 355 if secondary_scoring is not None: | |
| 356 # If secondary_scoring is specified, convert the list into comman separated string | |
| 357 scoring["secondary_scoring"] = ",".join(scoring["secondary_scoring"]) | |
| 358 scorer = get_scoring(scoring) | |
| 359 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | |
| 360 | |
| 361 # handle test (first) split | |
| 362 test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] | |
| 363 | |
| 364 if test_split_options["shuffle"] == "group": | |
| 365 test_split_options["labels"] = groups | |
| 366 if test_split_options["shuffle"] == "stratified": | |
| 367 if y is not None: | |
| 368 test_split_options["labels"] = y | |
| 369 else: | |
| 370 raise ValueError( | |
| 371 "Stratified shuffle split is not " "applicable on empty target values!" | |
| 372 ) | |
| 373 | |
| 374 X_train, X_test, y_train, y_test, groups_train, _groups_test = train_test_split_none( | |
| 375 X, y, groups, **test_split_options | |
| 376 ) | |
| 377 | |
| 378 exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] | |
| 379 | |
| 380 # handle validation (second) split | |
| 381 if exp_scheme == "train_val_test": | |
| 382 val_split_options = params["experiment_schemes"]["val_split"]["split_algos"] | |
| 383 | |
| 384 if val_split_options["shuffle"] == "group": | |
| 385 val_split_options["labels"] = groups_train | |
| 386 if val_split_options["shuffle"] == "stratified": | |
| 387 if y_train is not None: | |
| 388 val_split_options["labels"] = y_train | |
| 389 else: | |
| 390 raise ValueError( | |
| 391 "Stratified shuffle split is not " | |
| 392 "applicable on empty target values!" | |
| 393 ) | |
| 394 | |
| 395 ( | |
| 396 X_train, | |
| 397 X_val, | |
| 398 y_train, | |
| 399 y_val, | |
| 400 groups_train, | |
| 401 _groups_val, | |
| 402 ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) | |
| 403 | |
| 404 # train and eval | |
| 405 if hasattr(estimator, "validation_data"): | |
| 406 if exp_scheme == "train_val_test": | |
| 407 estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) | |
| 408 else: | |
| 409 estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) | |
| 410 else: | |
| 411 estimator.fit(X_train, y_train) | |
| 412 | |
| 413 if hasattr(estimator, "evaluate"): | |
| 414 scores = estimator.evaluate( | |
| 415 X_test, y_test=y_test, scorer=scorer, is_multimetric=True | |
| 416 ) | |
| 417 else: | |
| 418 scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) | |
| 419 # handle output | |
| 420 for name, score in scores.items(): | |
| 421 scores[name] = [score] | |
| 422 df = pd.DataFrame(scores) | |
| 423 df = df[sorted(df.columns)] | |
| 424 df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) | |
| 425 | |
| 426 memory.clear(warn=False) | |
| 427 | |
| 428 if outfile_object: | |
| 429 main_est = estimator | |
| 430 if isinstance(estimator, pipeline.Pipeline): | |
| 431 main_est = estimator.steps[-1][-1] | |
| 432 | |
| 433 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): | |
| 434 if outfile_weights: | |
| 435 main_est.save_weights(outfile_weights) | |
| 436 if getattr(main_est, "model_", None): | |
| 437 del main_est.model_ | |
| 438 if getattr(main_est, "fit_params", None): | |
| 439 del main_est.fit_params | |
| 440 if getattr(main_est, "model_class_", None): | |
| 441 del main_est.model_class_ | |
| 442 if getattr(main_est, "validation_data", None): | |
| 443 del main_est.validation_data | |
| 444 if getattr(main_est, "data_generator_", None): | |
| 445 del main_est.data_generator_ | |
| 446 | |
| 447 with open(outfile_object, "wb") as output_handler: | |
| 448 pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL) | |
| 449 | |
| 450 | |
| 451 if __name__ == "__main__": | |
| 452 aparser = argparse.ArgumentParser() | |
| 453 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 454 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
| 455 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 456 aparser.add_argument("-y", "--infile2", dest="infile2") | |
| 457 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
| 458 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
| 459 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
| 460 aparser.add_argument("-g", "--groups", dest="groups") | |
| 461 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
| 462 aparser.add_argument("-b", "--intervals", dest="intervals") | |
| 463 aparser.add_argument("-t", "--targets", dest="targets") | |
| 464 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
| 465 args = aparser.parse_args() | |
| 466 | |
| 467 main( | |
| 468 args.inputs, | |
| 469 args.infile_estimator, | |
| 470 args.infile1, | |
| 471 args.infile2, | |
| 472 args.outfile_result, | |
| 473 outfile_object=args.outfile_object, | |
| 474 outfile_weights=args.outfile_weights, | |
| 475 groups=args.groups, | |
| 476 ref_seq=args.ref_seq, | |
| 477 intervals=args.intervals, | |
| 478 targets=args.targets, | |
| 479 fasta_path=args.fasta_path, | |
| 480 ) |
