Mercurial > repos > bgruening > sklearn_train_test_eval
comparison simple_model_fit.py @ 9:ead7adad8d0e draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 18:45:35 +0000 |
parents | bf2bcf7bd617 |
children | a9e0b963b7bb |
comparison
equal
deleted
inserted
replaced
8:e03a58b31c12 | 9:ead7adad8d0e |
---|---|
2 import json | 2 import json |
3 import pandas as pd | 3 import pandas as pd |
4 import pickle | 4 import pickle |
5 | 5 |
6 from galaxy_ml.utils import load_model, read_columns | 6 from galaxy_ml.utils import load_model, read_columns |
7 from scipy.io import mmread | |
7 from sklearn.pipeline import Pipeline | 8 from sklearn.pipeline import Pipeline |
8 | 9 |
9 | 10 |
10 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | 11 N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) |
11 | 12 |
12 | 13 |
13 # TODO import from galaxy_ml.utils in future versions | 14 # TODO import from galaxy_ml.utils in future versions |
14 def clean_params(estimator, n_jobs=None): | 15 def clean_params(estimator, n_jobs=None): |
15 """clean unwanted hyperparameter settings | 16 """clean unwanted hyperparameter settings |
18 | 19 |
19 Return | 20 Return |
20 ------ | 21 ------ |
21 Cleaned estimator object | 22 Cleaned estimator object |
22 """ | 23 """ |
23 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', | 24 ALLOWED_CALLBACKS = ( |
24 'ReduceLROnPlateau', 'CSVLogger', 'None') | 25 "EarlyStopping", |
26 "TerminateOnNaN", | |
27 "ReduceLROnPlateau", | |
28 "CSVLogger", | |
29 "None", | |
30 ) | |
25 | 31 |
26 estimator_params = estimator.get_params() | 32 estimator_params = estimator.get_params() |
27 | 33 |
28 for name, p in estimator_params.items(): | 34 for name, p in estimator_params.items(): |
29 # all potential unauthorized file write | 35 # all potential unauthorized file write |
30 if name == 'memory' or name.endswith('__memory') \ | 36 if name == "memory" or name.endswith("__memory") or name.endswith("_path"): |
31 or name.endswith('_path'): | |
32 new_p = {name: None} | 37 new_p = {name: None} |
33 estimator.set_params(**new_p) | 38 estimator.set_params(**new_p) |
34 elif n_jobs is not None and (name == 'n_jobs' or | 39 elif n_jobs is not None and (name == 'n_jobs' or name.endswith('__n_jobs')): |
35 name.endswith('__n_jobs')): | |
36 new_p = {name: n_jobs} | 40 new_p = {name: n_jobs} |
37 estimator.set_params(**new_p) | 41 estimator.set_params(**new_p) |
38 elif name.endswith('callbacks'): | 42 elif name.endswith("callbacks"): |
39 for cb in p: | 43 for cb in p: |
40 cb_type = cb['callback_selection']['callback_type'] | 44 cb_type = cb["callback_selection"]["callback_type"] |
41 if cb_type not in ALLOWED_CALLBACKS: | 45 if cb_type not in ALLOWED_CALLBACKS: |
42 raise ValueError( | 46 raise ValueError("Prohibited callback type: %s!" % cb_type) |
43 "Prohibited callback type: %s!" % cb_type) | |
44 | 47 |
45 return estimator | 48 return estimator |
46 | 49 |
47 | 50 |
48 def _get_X_y(params, infile1, infile2): | 51 def _get_X_y(params, infile1, infile2): |
49 """ read from inputs and output X and y | 52 """read from inputs and output X and y |
50 | 53 |
51 Parameters | 54 Parameters |
52 ---------- | 55 ---------- |
53 params : dict | 56 params : dict |
54 Tool inputs parameter | 57 Tool inputs parameter |
59 | 62 |
60 """ | 63 """ |
61 # store read dataframe object | 64 # store read dataframe object |
62 loaded_df = {} | 65 loaded_df = {} |
63 | 66 |
64 input_type = params['input_options']['selected_input'] | 67 input_type = params["input_options"]["selected_input"] |
65 # tabular input | 68 # tabular input |
66 if input_type == 'tabular': | 69 if input_type == "tabular": |
67 header = 'infer' if params['input_options']['header1'] else None | 70 header = "infer" if params["input_options"]["header1"] else None |
68 column_option = (params['input_options']['column_selector_options_1'] | 71 column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] |
69 ['selected_column_selector_option']) | 72 if column_option in [ |
70 if column_option in ['by_index_number', 'all_but_by_index_number', | 73 "by_index_number", |
71 'by_header_name', 'all_but_by_header_name']: | 74 "all_but_by_index_number", |
72 c = params['input_options']['column_selector_options_1']['col1'] | 75 "by_header_name", |
76 "all_but_by_header_name", | |
77 ]: | |
78 c = params["input_options"]["column_selector_options_1"]["col1"] | |
73 else: | 79 else: |
74 c = None | 80 c = None |
75 | 81 |
76 df_key = infile1 + repr(header) | 82 df_key = infile1 + repr(header) |
77 df = pd.read_csv(infile1, sep='\t', header=header, | 83 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) |
78 parse_dates=True) | |
79 loaded_df[df_key] = df | 84 loaded_df[df_key] = df |
80 | 85 |
81 X = read_columns(df, c=c, c_option=column_option).astype(float) | 86 X = read_columns(df, c=c, c_option=column_option).astype(float) |
82 # sparse input | 87 # sparse input |
83 elif input_type == 'sparse': | 88 elif input_type == "sparse": |
84 X = mmread(open(infile1, 'r')) | 89 X = mmread(open(infile1, "r")) |
85 | 90 |
86 # Get target y | 91 # Get target y |
87 header = 'infer' if params['input_options']['header2'] else None | 92 header = "infer" if params["input_options"]["header2"] else None |
88 column_option = (params['input_options']['column_selector_options_2'] | 93 column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] |
89 ['selected_column_selector_option2']) | 94 if column_option in [ |
90 if column_option in ['by_index_number', 'all_but_by_index_number', | 95 "by_index_number", |
91 'by_header_name', 'all_but_by_header_name']: | 96 "all_but_by_index_number", |
92 c = params['input_options']['column_selector_options_2']['col2'] | 97 "by_header_name", |
98 "all_but_by_header_name", | |
99 ]: | |
100 c = params["input_options"]["column_selector_options_2"]["col2"] | |
93 else: | 101 else: |
94 c = None | 102 c = None |
95 | 103 |
96 df_key = infile2 + repr(header) | 104 df_key = infile2 + repr(header) |
97 if df_key in loaded_df: | 105 if df_key in loaded_df: |
98 infile2 = loaded_df[df_key] | 106 infile2 = loaded_df[df_key] |
99 else: | 107 else: |
100 infile2 = pd.read_csv(infile2, sep='\t', | 108 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) |
101 header=header, parse_dates=True) | |
102 loaded_df[df_key] = infile2 | 109 loaded_df[df_key] = infile2 |
103 | 110 |
104 y = read_columns( | 111 y = read_columns(infile2, |
105 infile2, | 112 c=c, |
106 c=c, | 113 c_option=column_option, |
107 c_option=column_option, | 114 sep='\t', |
108 sep='\t', | 115 header=header, |
109 header=header, | 116 parse_dates=True) |
110 parse_dates=True) | |
111 if len(y.shape) == 2 and y.shape[1] == 1: | 117 if len(y.shape) == 2 and y.shape[1] == 1: |
112 y = y.ravel() | 118 y = y.ravel() |
113 | 119 |
114 return X, y | 120 return X, y |
115 | 121 |
116 | 122 |
117 def main(inputs, infile_estimator, infile1, infile2, out_object, | 123 def main(inputs, infile_estimator, infile1, infile2, out_object, out_weights=None): |
118 out_weights=None): | 124 """main |
119 """ main | |
120 | 125 |
121 Parameters | 126 Parameters |
122 ---------- | 127 ---------- |
123 inputs : str | 128 inputs : str |
124 File path to galaxy tool parameter | 129 File path to galaxy tool parameter |
137 | 142 |
138 out_weights : str | 143 out_weights : str |
139 File path for output of weights | 144 File path for output of weights |
140 | 145 |
141 """ | 146 """ |
142 with open(inputs, 'r') as param_handler: | 147 with open(inputs, "r") as param_handler: |
143 params = json.load(param_handler) | 148 params = json.load(param_handler) |
144 | 149 |
145 # load model | 150 # load model |
146 with open(infile_estimator, 'rb') as est_handler: | 151 with open(infile_estimator, "rb") as est_handler: |
147 estimator = load_model(est_handler) | 152 estimator = load_model(est_handler) |
148 estimator = clean_params(estimator, n_jobs=N_JOBS) | 153 estimator = clean_params(estimator, n_jobs=N_JOBS) |
149 | 154 |
150 X_train, y_train = _get_X_y(params, infile1, infile2) | 155 X_train, y_train = _get_X_y(params, infile1, infile2) |
151 | 156 |
152 estimator.fit(X_train, y_train) | 157 estimator.fit(X_train, y_train) |
153 | 158 |
154 main_est = estimator | 159 main_est = estimator |
155 if isinstance(main_est, Pipeline): | 160 if isinstance(main_est, Pipeline): |
156 main_est = main_est.steps[-1][-1] | 161 main_est = main_est.steps[-1][-1] |
157 if hasattr(main_est, 'model_') \ | 162 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): |
158 and hasattr(main_est, 'save_weights'): | |
159 if out_weights: | 163 if out_weights: |
160 main_est.save_weights(out_weights) | 164 main_est.save_weights(out_weights) |
161 del main_est.model_ | 165 del main_est.model_ |
162 del main_est.fit_params | 166 del main_est.fit_params |
163 del main_est.model_class_ | 167 del main_est.model_class_ |
164 del main_est.validation_data | 168 if getattr(main_est, "validation_data", None): |
165 if getattr(main_est, 'data_generator_', None): | 169 del main_est.validation_data |
170 if getattr(main_est, "data_generator_", None): | |
166 del main_est.data_generator_ | 171 del main_est.data_generator_ |
167 | 172 |
168 with open(out_object, 'wb') as output_handler: | 173 with open(out_object, "wb") as output_handler: |
169 pickle.dump(estimator, output_handler, | 174 pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL) |
170 pickle.HIGHEST_PROTOCOL) | |
171 | 175 |
172 | 176 |
173 if __name__ == '__main__': | 177 if __name__ == "__main__": |
174 aparser = argparse.ArgumentParser() | 178 aparser = argparse.ArgumentParser() |
175 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 179 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |
176 aparser.add_argument("-X", "--infile_estimator", dest="infile_estimator") | 180 aparser.add_argument("-X", "--infile_estimator", dest="infile_estimator") |
177 aparser.add_argument("-y", "--infile1", dest="infile1") | 181 aparser.add_argument("-y", "--infile1", dest="infile1") |
178 aparser.add_argument("-g", "--infile2", dest="infile2") | 182 aparser.add_argument("-g", "--infile2", dest="infile2") |
179 aparser.add_argument("-o", "--out_object", dest="out_object") | 183 aparser.add_argument("-o", "--out_object", dest="out_object") |
180 aparser.add_argument("-t", "--out_weights", dest="out_weights") | 184 aparser.add_argument("-t", "--out_weights", dest="out_weights") |
181 args = aparser.parse_args() | 185 args = aparser.parse_args() |
182 | 186 |
183 main(args.inputs, args.infile_estimator, args.infile1, | 187 main( |
184 args.infile2, args.out_object, args.out_weights) | 188 args.inputs, |
189 args.infile_estimator, | |
190 args.infile1, | |
191 args.infile2, | |
192 args.out_object, | |
193 args.out_weights, | |
194 ) |