Mercurial > repos > bgruening > sklearn_train_test_eval
comparison to_categorical.py @ 9:ead7adad8d0e draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 18:45:35 +0000 |
parents | |
children | caf7d2b71a48 |
comparison
equal
deleted
inserted
replaced
8:e03a58b31c12 | 9:ead7adad8d0e |
---|---|
1 import argparse | |
2 import json | |
3 import warnings | |
4 | |
5 import numpy as np | |
6 import pandas as pd | |
7 from keras.utils import to_categorical | |
8 | |
9 | |
10 def main(inputs, infile, outfile, num_classes=None): | |
11 """ | |
12 Parameter | |
13 --------- | |
14 input : str | |
15 File path to galaxy tool parameter | |
16 | |
17 infile : str | |
18 File paths of input vector | |
19 | |
20 outfile : str | |
21 File path to output matrix | |
22 | |
23 num_classes : str | |
24 Total number of classes. If None, this would be inferred as the (largest number in y) + 1 | |
25 | |
26 """ | |
27 warnings.simplefilter("ignore") | |
28 | |
29 with open(inputs, "r") as param_handler: | |
30 params = json.load(param_handler) | |
31 | |
32 input_header = params["header0"] | |
33 header = "infer" if input_header else None | |
34 | |
35 input_vector = pd.read_csv(infile, sep="\t", header=header) | |
36 | |
37 output_matrix = to_categorical(input_vector, num_classes=num_classes) | |
38 | |
39 np.savetxt(outfile, output_matrix, fmt="%d", delimiter="\t") | |
40 | |
41 | |
42 if __name__ == "__main__": | |
43 aparser = argparse.ArgumentParser() | |
44 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
45 aparser.add_argument("-y", "--infile", dest="infile") | |
46 aparser.add_argument("-n", "--num_classes", dest="num_classes", type=int, default=None) | |
47 aparser.add_argument("-o", "--outfile", dest="outfile") | |
48 args = aparser.parse_args() | |
49 | |
50 main(args.inputs, args.infile, args.outfile, args.num_classes) |