Mercurial > repos > bgruening > sklearn_train_test_eval
diff test-data/get_params03.tabular @ 0:68aaa903052a draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 60f0fbc0eafd7c11bc60fb6c77f2937782efd8a9-dirty
author | bgruening |
---|---|
date | Fri, 09 Aug 2019 07:09:06 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/get_params03.tabular Fri Aug 09 07:09:06 2019 -0400 @@ -0,0 +1,43 @@ + Parameter Value +* memory memory: None +* steps "steps: [('robustscaler', RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True, + with_scaling=True)), ('xgbclassifier', XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, + colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, + max_depth=3, min_child_weight=1, missing=nan, n_estimators=100, + n_jobs=1, nthread=None, objective='binary:logistic', random_state=0, + reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, + silent=True, subsample=1))]" +@ robustscaler "robustscaler: RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True, + with_scaling=True)" +@ xgbclassifier "xgbclassifier: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, + colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, + max_depth=3, min_child_weight=1, missing=nan, n_estimators=100, + n_jobs=1, nthread=None, objective='binary:logistic', random_state=0, + reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, + silent=True, subsample=1)" +@ robustscaler__copy robustscaler__copy: True +@ robustscaler__quantile_range robustscaler__quantile_range: (25.0, 75.0) +@ robustscaler__with_centering robustscaler__with_centering: True +@ robustscaler__with_scaling robustscaler__with_scaling: True +@ xgbclassifier__base_score xgbclassifier__base_score: 0.5 +@ xgbclassifier__booster xgbclassifier__booster: 'gbtree' +@ xgbclassifier__colsample_bylevel xgbclassifier__colsample_bylevel: 1 +@ xgbclassifier__colsample_bytree xgbclassifier__colsample_bytree: 1 +@ xgbclassifier__gamma xgbclassifier__gamma: 0 +@ xgbclassifier__learning_rate xgbclassifier__learning_rate: 0.1 +@ xgbclassifier__max_delta_step xgbclassifier__max_delta_step: 0 +@ xgbclassifier__max_depth xgbclassifier__max_depth: 3 +@ xgbclassifier__min_child_weight xgbclassifier__min_child_weight: 1 +@ xgbclassifier__missing xgbclassifier__missing: nan +@ xgbclassifier__n_estimators xgbclassifier__n_estimators: 100 +* xgbclassifier__n_jobs xgbclassifier__n_jobs: 1 +* xgbclassifier__nthread xgbclassifier__nthread: None +@ xgbclassifier__objective xgbclassifier__objective: 'binary:logistic' +@ xgbclassifier__random_state xgbclassifier__random_state: 0 +@ xgbclassifier__reg_alpha xgbclassifier__reg_alpha: 0 +@ xgbclassifier__reg_lambda xgbclassifier__reg_lambda: 1 +@ xgbclassifier__scale_pos_weight xgbclassifier__scale_pos_weight: 1 +@ xgbclassifier__seed xgbclassifier__seed: None +@ xgbclassifier__silent xgbclassifier__silent: True +@ xgbclassifier__subsample xgbclassifier__subsample: 1 + Note: @, searchable params in searchcv too.