Mercurial > repos > bgruening > sklearn_train_test_split
comparison ml_visualization_ex.py @ 7:3312fb686ffb draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 01:26:43 +0000 |
parents | 13b9ac5d277c |
children | 5da2217cd788 |
comparison
equal
deleted
inserted
replaced
6:13b9ac5d277c | 7:3312fb686ffb |
---|---|
11 import plotly.graph_objs as go | 11 import plotly.graph_objs as go |
12 from galaxy_ml.utils import load_model, read_columns, SafeEval | 12 from galaxy_ml.utils import load_model, read_columns, SafeEval |
13 from keras.models import model_from_json | 13 from keras.models import model_from_json |
14 from keras.utils import plot_model | 14 from keras.utils import plot_model |
15 from sklearn.feature_selection.base import SelectorMixin | 15 from sklearn.feature_selection.base import SelectorMixin |
16 from sklearn.metrics import auc, average_precision_score, confusion_matrix, precision_recall_curve, roc_curve | 16 from sklearn.metrics import (auc, average_precision_score, confusion_matrix, |
17 precision_recall_curve, roc_curve) | |
17 from sklearn.pipeline import Pipeline | 18 from sklearn.pipeline import Pipeline |
18 | |
19 | 19 |
20 safe_eval = SafeEval() | 20 safe_eval = SafeEval() |
21 | 21 |
22 # plotly default colors | 22 # plotly default colors |
23 default_colors = [ | 23 default_colors = [ |
49 data = [] | 49 data = [] |
50 for idx in range(df1.shape[1]): | 50 for idx in range(df1.shape[1]): |
51 y_true = df1.iloc[:, idx].values | 51 y_true = df1.iloc[:, idx].values |
52 y_score = df2.iloc[:, idx].values | 52 y_score = df2.iloc[:, idx].values |
53 | 53 |
54 precision, recall, _ = precision_recall_curve(y_true, y_score, pos_label=pos_label) | 54 precision, recall, _ = precision_recall_curve( |
55 y_true, y_score, pos_label=pos_label | |
56 ) | |
55 ap = average_precision_score(y_true, y_score, pos_label=pos_label or 1) | 57 ap = average_precision_score(y_true, y_score, pos_label=pos_label or 1) |
56 | 58 |
57 trace = go.Scatter( | 59 trace = go.Scatter( |
58 x=recall, | 60 x=recall, |
59 y=precision, | 61 y=precision, |
109 | 111 |
110 for idx in range(df1.shape[1]): | 112 for idx in range(df1.shape[1]): |
111 y_true = df1.iloc[:, idx].values | 113 y_true = df1.iloc[:, idx].values |
112 y_score = df2.iloc[:, idx].values | 114 y_score = df2.iloc[:, idx].values |
113 | 115 |
114 precision, recall, _ = precision_recall_curve(y_true, y_score, pos_label=pos_label) | 116 precision, recall, _ = precision_recall_curve( |
117 y_true, y_score, pos_label=pos_label | |
118 ) | |
115 ap = average_precision_score(y_true, y_score, pos_label=pos_label or 1) | 119 ap = average_precision_score(y_true, y_score, pos_label=pos_label or 1) |
116 | 120 |
117 plt.step( | 121 plt.step( |
118 recall, | 122 recall, |
119 precision, | 123 precision, |
153 data = [] | 157 data = [] |
154 for idx in range(df1.shape[1]): | 158 for idx in range(df1.shape[1]): |
155 y_true = df1.iloc[:, idx].values | 159 y_true = df1.iloc[:, idx].values |
156 y_score = df2.iloc[:, idx].values | 160 y_score = df2.iloc[:, idx].values |
157 | 161 |
158 fpr, tpr, _ = roc_curve(y_true, y_score, pos_label=pos_label, drop_intermediate=drop_intermediate) | 162 fpr, tpr, _ = roc_curve( |
163 y_true, y_score, pos_label=pos_label, drop_intermediate=drop_intermediate | |
164 ) | |
159 roc_auc = auc(fpr, tpr) | 165 roc_auc = auc(fpr, tpr) |
160 | 166 |
161 trace = go.Scatter( | 167 trace = go.Scatter( |
162 x=fpr, | 168 x=fpr, |
163 y=tpr, | 169 y=tpr, |
166 name="%s (area = %.3f)" % (idx, roc_auc), | 172 name="%s (area = %.3f)" % (idx, roc_auc), |
167 ) | 173 ) |
168 data.append(trace) | 174 data.append(trace) |
169 | 175 |
170 layout = go.Layout( | 176 layout = go.Layout( |
171 xaxis=dict(title="False Positive Rate", linecolor="lightslategray", linewidth=1), | 177 xaxis=dict( |
178 title="False Positive Rate", linecolor="lightslategray", linewidth=1 | |
179 ), | |
172 yaxis=dict(title="True Positive Rate", linecolor="lightslategray", linewidth=1), | 180 yaxis=dict(title="True Positive Rate", linecolor="lightslategray", linewidth=1), |
173 title=dict( | 181 title=dict( |
174 text=title or "Receiver Operating Characteristic (ROC) Curve", | 182 text=title or "Receiver Operating Characteristic (ROC) Curve", |
175 x=0.5, | 183 x=0.5, |
176 y=0.92, | 184 y=0.92, |
202 plotly.offline.plot(fig, filename="output.html", auto_open=False) | 210 plotly.offline.plot(fig, filename="output.html", auto_open=False) |
203 # to be discovered by `from_work_dir` | 211 # to be discovered by `from_work_dir` |
204 os.rename("output.html", "output") | 212 os.rename("output.html", "output") |
205 | 213 |
206 | 214 |
207 def visualize_roc_curve_matplotlib(df1, df2, pos_label, drop_intermediate=True, title=None): | 215 def visualize_roc_curve_matplotlib( |
216 df1, df2, pos_label, drop_intermediate=True, title=None | |
217 ): | |
208 """visualize roc-curve using matplotlib and output svg image""" | 218 """visualize roc-curve using matplotlib and output svg image""" |
209 backend = matplotlib.get_backend() | 219 backend = matplotlib.get_backend() |
210 if "inline" not in backend: | 220 if "inline" not in backend: |
211 matplotlib.use("SVG") | 221 matplotlib.use("SVG") |
212 plt.style.use("seaborn-colorblind") | 222 plt.style.use("seaborn-colorblind") |
214 | 224 |
215 for idx in range(df1.shape[1]): | 225 for idx in range(df1.shape[1]): |
216 y_true = df1.iloc[:, idx].values | 226 y_true = df1.iloc[:, idx].values |
217 y_score = df2.iloc[:, idx].values | 227 y_score = df2.iloc[:, idx].values |
218 | 228 |
219 fpr, tpr, _ = roc_curve(y_true, y_score, pos_label=pos_label, drop_intermediate=drop_intermediate) | 229 fpr, tpr, _ = roc_curve( |
230 y_true, y_score, pos_label=pos_label, drop_intermediate=drop_intermediate | |
231 ) | |
220 roc_auc = auc(fpr, tpr) | 232 roc_auc = auc(fpr, tpr) |
221 | 233 |
222 plt.step( | 234 plt.step( |
223 fpr, | 235 fpr, |
224 tpr, | 236 tpr, |
251 "all_but_by_header_name", | 263 "all_but_by_header_name", |
252 ]: | 264 ]: |
253 col = plot_selection[column_name]["col1"] | 265 col = plot_selection[column_name]["col1"] |
254 else: | 266 else: |
255 col = None | 267 col = None |
256 _, input_df = read_columns(file_path, c=col, | 268 _, input_df = read_columns( |
257 c_option=column_option, | 269 file_path, |
258 return_df=True, | 270 c=col, |
259 sep='\t', header=header, | 271 c_option=column_option, |
260 parse_dates=True) | 272 return_df=True, |
273 sep="\t", | |
274 header=header, | |
275 parse_dates=True, | |
276 ) | |
261 return input_df | 277 return input_df |
262 | 278 |
263 | 279 |
264 def main( | 280 def main( |
265 inputs, | 281 inputs, |
342 | 358 |
343 if plot_type == "feature_importances": | 359 if plot_type == "feature_importances": |
344 with open(infile_estimator, "rb") as estimator_handler: | 360 with open(infile_estimator, "rb") as estimator_handler: |
345 estimator = load_model(estimator_handler) | 361 estimator = load_model(estimator_handler) |
346 | 362 |
347 column_option = params["plotting_selection"]["column_selector_options"]["selected_column_selector_option"] | 363 column_option = params["plotting_selection"]["column_selector_options"][ |
364 "selected_column_selector_option" | |
365 ] | |
348 if column_option in [ | 366 if column_option in [ |
349 "by_index_number", | 367 "by_index_number", |
350 "all_but_by_index_number", | 368 "all_but_by_index_number", |
351 "by_header_name", | 369 "by_header_name", |
352 "all_but_by_header_name", | 370 "all_but_by_header_name", |
377 if hasattr(estimator, "coef_"): | 395 if hasattr(estimator, "coef_"): |
378 coefs = estimator.coef_ | 396 coefs = estimator.coef_ |
379 else: | 397 else: |
380 coefs = getattr(estimator, "feature_importances_", None) | 398 coefs = getattr(estimator, "feature_importances_", None) |
381 if coefs is None: | 399 if coefs is None: |
382 raise RuntimeError("The classifier does not expose " '"coef_" or "feature_importances_" ' "attributes") | 400 raise RuntimeError( |
401 "The classifier does not expose " | |
402 '"coef_" or "feature_importances_" ' | |
403 "attributes" | |
404 ) | |
383 | 405 |
384 threshold = params["plotting_selection"]["threshold"] | 406 threshold = params["plotting_selection"]["threshold"] |
385 if threshold is not None: | 407 if threshold is not None: |
386 mask = (coefs > threshold) | (coefs < -threshold) | 408 mask = (coefs > threshold) | (coefs < -threshold) |
387 coefs = coefs[mask] | 409 coefs = coefs[mask] |
452 mode="lines", | 474 mode="lines", |
453 ) | 475 ) |
454 layout = go.Layout( | 476 layout = go.Layout( |
455 xaxis=dict(title="Number of features selected"), | 477 xaxis=dict(title="Number of features selected"), |
456 yaxis=dict(title="Cross validation score"), | 478 yaxis=dict(title="Cross validation score"), |
457 title=dict(text=title or None, x=0.5, y=0.92, xanchor="center", yanchor="top"), | 479 title=dict( |
480 text=title or None, x=0.5, y=0.92, xanchor="center", yanchor="top" | |
481 ), | |
458 font=dict(family="sans-serif", size=11), | 482 font=dict(family="sans-serif", size=11), |
459 # control backgroud colors | 483 # control backgroud colors |
460 plot_bgcolor="rgba(255,255,255,0)", | 484 plot_bgcolor="rgba(255,255,255,0)", |
461 ) | 485 ) |
462 """ | 486 """ |
546 | 570 |
547 return 0 | 571 return 0 |
548 | 572 |
549 elif plot_type == "classification_confusion_matrix": | 573 elif plot_type == "classification_confusion_matrix": |
550 plot_selection = params["plotting_selection"] | 574 plot_selection = params["plotting_selection"] |
551 input_true = get_dataframe(true_labels, plot_selection, "header_true", "column_selector_options_true") | 575 input_true = get_dataframe( |
576 true_labels, plot_selection, "header_true", "column_selector_options_true" | |
577 ) | |
552 header_predicted = "infer" if plot_selection["header_predicted"] else None | 578 header_predicted = "infer" if plot_selection["header_predicted"] else None |
553 input_predicted = pd.read_csv(predicted_labels, sep="\t", parse_dates=True, header=header_predicted) | 579 input_predicted = pd.read_csv( |
580 predicted_labels, sep="\t", parse_dates=True, header=header_predicted | |
581 ) | |
554 true_classes = input_true.iloc[:, -1].copy() | 582 true_classes = input_true.iloc[:, -1].copy() |
555 predicted_classes = input_predicted.iloc[:, -1].copy() | 583 predicted_classes = input_predicted.iloc[:, -1].copy() |
556 axis_labels = list(set(true_classes)) | 584 axis_labels = list(set(true_classes)) |
557 c_matrix = confusion_matrix(true_classes, predicted_classes) | 585 c_matrix = confusion_matrix(true_classes, predicted_classes) |
558 fig, ax = plt.subplots(figsize=(7, 7)) | 586 fig, ax = plt.subplots(figsize=(7, 7)) |