Mercurial > repos > bgruening > sucos_max_score
view sucos.py @ 1:8eab6d2b7bdf draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/chemicaltoolbox/sucos commit 6fa2a0294d615c9f267b766337dca0b2d3637219"
author | bgruening |
---|---|
date | Fri, 11 Oct 2019 18:25:27 -0400 |
parents | bb5365381c8f |
children | 2f110aef9b53 |
line wrap: on
line source
#!/usr/bin/env python """ Basic SuCOS scoring. Allows a set of molecules from a SD file to be overlayed to a reference molecule, with the resulting scores being written as properties in the output SD file. SuCOS is the work of Susan Leung. GitHub: https://github.com/susanhleung/SuCOS Publication: https://doi.org/10.26434/chemrxiv.8100203.v1 """ from __future__ import print_function import argparse, os, sys, gzip import numpy as np from rdkit import Chem, rdBase, RDConfig from rdkit.Chem import AllChem, rdShapeHelpers from rdkit.Chem.FeatMaps import FeatMaps import utils ### start function definitions ######################################### # Setting up the features to use in FeatureMap fdef = AllChem.BuildFeatureFactory(os.path.join(RDConfig.RDDataDir, 'BaseFeatures.fdef')) fmParams = {} for k in fdef.GetFeatureFamilies(): fparams = FeatMaps.FeatMapParams() fmParams[k] = fparams keep = ('Donor', 'Acceptor', 'NegIonizable', 'PosIonizable', 'ZnBinder', 'Aromatic', 'Hydrophobe', 'LumpedHydrophobe') def filterFeature(f): result = f.GetFamily() in keep # TODO - nothing ever seems to be filtered. Is this expected? if not result: utils.log("Filtered out feature type", f.GetFamily()) return result def getRawFeatures(mol): rawFeats = fdef.GetFeaturesForMol(mol) # filter that list down to only include the ones we're interested in filtered = list(filter(filterFeature, rawFeats)) return filtered def get_FeatureMapScore(small_feats, large_feats, tani=False, score_mode=FeatMaps.FeatMapScoreMode.All): """ Generate the feature map score. :param small_feats: :param large_feats: :param tani: :return: """ featLists = [] for rawFeats in [small_feats, large_feats]: # filter that list down to only include the ones we're interested in featLists.append(rawFeats) fms = [FeatMaps.FeatMap(feats=x, weights=[1] * len(x), params=fmParams) for x in featLists] # set the score mode fms[0].scoreMode = score_mode try: if tani: c = fms[0].ScoreFeats(featLists[1]) A = fms[0].GetNumFeatures() B = len(featLists[1]) if B != fms[1].GetNumFeatures(): utils.log("Why isn't B equal to number of features...?!") tani_score = float(c) / (A+B-c) return tani_score else: fm_score = fms[0].ScoreFeats(featLists[1]) / min(fms[0].GetNumFeatures(), len(featLists[1])) return fm_score except ZeroDivisionError: utils.log("ZeroDivisionError") return 0 if tani: tani_score = float(c) / (A+B-c) return tani_score else: fm_score = fms[0].ScoreFeats(featLists[1]) / min(fms[0].GetNumFeatures(), len(featLists[1])) return fm_score def get_SucosScore(ref_mol, query_mol, tani=False, ref_features=None, query_features=None, score_mode=FeatMaps.FeatMapScoreMode.All): """ This is the key function that calculates the SuCOS scores and is expected to be called from other modules. To improve performance you can pre-calculate the features and pass them in as optional parameters to avoid having to recalculate them. Use the getRawFeatures function to pre-calculate the features. :param ref_mol: The reference molecule to compare to :param query_mol: The molecule to align to the reference :param tani: Whether to calculate Tanimoto distances :param ref_features: An optional feature map for the reference molecule, avoiding the need to re-calculate it. :param query_features: An optional feature map for the query molecule, avoiding the need to re-calculate it. :return: A tuple of 3 values. 1 the sucos score, 2 the feature map score, 3 the Tanimoto distance or 1 minus the protrude distance """ if not ref_features: ref_features = getRawFeatures(ref_mol) if not query_features: query_features = getRawFeatures(query_mol) fm_score = get_FeatureMapScore(ref_features, query_features, tani, score_mode) fm_score = np.clip(fm_score, 0, 1) if tani: tani_sim = 1 - float(rdShapeHelpers.ShapeTanimotoDist(ref_mol, query_mol)) tani_sim = np.clip(tani_sim, 0, 1) SuCOS_score = 0.5*fm_score + 0.5*tani_sim return SuCOS_score, fm_score, tani_sim else: protrude_dist = rdShapeHelpers.ShapeProtrudeDist(ref_mol, query_mol, allowReordering=False) protrude_dist = np.clip(protrude_dist, 0, 1) protrude_val = 1.0 - protrude_dist SuCOS_score = 0.5 * fm_score + 0.5 * protrude_val return SuCOS_score, fm_score, protrude_val def process(refmol_filename, inputs_filename, outputs_filename, refmol_index=None, refmol_format=None, tani=False, score_mode=FeatMaps.FeatMapScoreMode.All): ref_mol = utils.read_single_molecule(refmol_filename, index=refmol_index, format=refmol_format) #utils.log("Reference mol has", ref_mol.GetNumHeavyAtoms(), "heavy atoms") ref_features = getRawFeatures(ref_mol) input_file = utils.open_file_for_reading(inputs_filename) suppl = Chem.ForwardSDMolSupplier(input_file) output_file = utils.open_file_for_writing(outputs_filename) writer = Chem.SDWriter(output_file) count = 0 total = 0 errors = 0 for mol in suppl: count +=1 if mol is None: continue #utils.log("Mol has", str(mol.GetNumHeavyAtoms()), "heavy atoms") try: sucos_score, fm_score, val3 = get_SucosScore(ref_mol, mol, tani=tani, ref_features=ref_features, score_mode=score_mode) mol.SetDoubleProp("SuCOS_Score", sucos_score) mol.SetDoubleProp("SuCOS_FeatureMap_Score", fm_score) if tani: mol.SetDoubleProp("SuCOS_Tanimoto_Score", val3) else: mol.SetDoubleProp("SuCOS_Protrude_Score", val3) utils.log("Scores:", sucos_score, fm_score, val3) writer.write(mol) total +=1 except ValueError as e: errors +=1 utils.log("Molecule", count, "failed to score:", e.message) input_file.close() writer.flush() writer.close() output_file.close() utils.log("Completed.", total, "processed, ", count, "succeeded, ", errors, "errors") def parse_score_mode(value): if value == None or value == 'all': return FeatMaps.FeatMapScoreMode.All elif value == 'closest': return FeatMaps.FeatMapScoreMode.Closest elif value == 'best': return FeatMaps.FeatMapScoreMode.Best else: raise ValueError(value + " is not a valid scoring mode option") ### start main execution ######################################### def main(): parser = argparse.ArgumentParser(description='SuCOS with RDKit') parser.add_argument('-i', '--input', help='Input file in SDF format. Can be gzipped (*.gz).') parser.add_argument('-r', '--refmol', help='Molecule to compare against in Molfile (.mol) or SDF (.sdf) format') parser.add_argument('--refmol-format', help="Format for the reference molecule (mol or sdf). " + "Only needed if files don't have the expected extensions") parser.add_argument('--refmolidx', help='Reference molecule index in SD file if not the first', type=int, default=1) parser.add_argument('-o', '--output', help='Output file in SDF format. Can be gzipped (*.gz).') parser.add_argument('--tanimoto', action='store_true', help='Include Tanimoto distance in score') parser.add_argument('--score_mode', choices=['all', 'closest', 'best'], help="choose the scoring mode for the feature map, default is 'all'.") args = parser.parse_args() utils.log("SuCOS Args: ", args) score_mode = parse_score_mode(args.score_mode) process(args.refmol, args.input, args.output, refmol_index=args.refmolidx, refmol_format=args.refmol_format, tani=args.tanimoto, score_mode=score_mode) if __name__ == "__main__": main()