Mercurial > repos > bgruening > sucos_max_score
view sucos_cluster.py @ 0:bb5365381c8f draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/chemicaltoolbox/sucos commit ef86cfa5f7ab5043de420511211579d03df58645"
author | bgruening |
---|---|
date | Wed, 02 Oct 2019 12:57:54 -0400 |
parents | |
children | 9b48456a96fe |
line wrap: on
line source
#!/usr/bin/env python """ Cluster a set of molecules based on their 3D overlays as determined by the SuCOS score. This will generate a set of SD files, one for each cluster of molecules (presumably corresponding to a binding pocket in the protein target). SuCOS is the work of Susan Leung. GitHub: https://github.com/susanhleung/SuCOS Publication: https://doi.org/10.26434/chemrxiv.8100203.v1 """ import sucos, utils import argparse, gzip from rdkit import Chem import numpy as np import pandas as pd from scipy.cluster.hierarchy import linkage, fcluster ### start main execution ######################################### def calc_distance_matrix(mols): """ Calculate a full distance matrix for the given molecules. Identical molecules get a score of 0.0 with the maximum distance possible being 1.0. :param mols: A list of molecules. It must be possible to iterate through this list multiple times :return: A NxN 2D array of distance scores, with N being the number of molecules in the input """ # TODO - do we need to calculate both sides of the matrix? Tanimoto is supposed to be a symmetric distance measure, # but the matrix that is generated does not seem to be symmetric. mol_fm_tuples = [] for mol in mols: features = sucos.getRawFeatures(mol) mol_fm_tuples.append((mol, features)) matrix = [] for tuple1 in mol_fm_tuples: tmp = [] for tuple2 in mol_fm_tuples: if tuple1[0] == tuple2[0]: tmp.append(0.0) else: #utils.log("Calculating SuCOS between", mol1, mol2) sucos_score, fm_score, tani_score = sucos.get_SucosScore(tuple1[0], tuple2[0], tani=True, ref_features=tuple1[1], query_features=tuple2[1]) tmp.append(1.0 - sucos_score) matrix.append(tmp) return matrix def cluster(matrix, threshold=0.8): """ Cluster the supplied distance matrix returning an array of clusters. :param matrix: the distance matrix, as calculated with the calc_distance_matrix function. :param threshold: The clustering cuttoff. The default of 0.8 is a reasonable value to use. :return: An array of clusters, each cluster being an array of the indices from the matrix. """ indexes = [x for x in range(0, len(matrix))] cols = [x for x in range(0, len(matrix[0]))] #utils.log("indexes", indexes) #utils.log("cols", cols) df = pd.DataFrame(matrix, columns=cols, index=indexes) utils.log("DataFrame:", df.shape) #utils.log(df) indices = np.triu_indices(df.shape[0], k=1) #utils.log("Indices:", indices) t = np.array(df)[indices] Z = linkage(t, 'average') lig_clusters = [] cluster_arr = fcluster(Z, t=threshold, criterion='distance') for i in range(np.amax(cluster_arr)): clus = df.columns[np.argwhere(cluster_arr==i+1)] lig_clusters.append([x[0] for x in clus.tolist()]) utils.log("Clusters", lig_clusters) return lig_clusters def write_clusters_to_sdfs(mols, clusters, basename, gzip=False): """ Write the molecules to SDF files, 1 file for each cluster. :param mols The molecules to write: :param clusters The clusters, as returned by the cluster function: :param basename The basename for the file name. e.g. if basename is 'output' then files like output1.sdf, output2.sdf will be written: :param gzip Whether to gzip the output :return: """ i = 0 for cluster in clusters: i += 1 filename = basename + str(i) + ".sdf" if gzip: filename += ".gz" utils.log("Writing ", len(cluster), "molecules in cluster", i, "to file", filename) output_file = utils.open_file_for_writing(filename) writer = Chem.SDWriter(output_file) for index in cluster: mol = mols[index] writer.write(mol) writer.flush() writer.close() output_file.close() def main(): parser = argparse.ArgumentParser(description='Clustering with SuCOS and RDKit') parser.add_argument('-i', '--input', help='Input file in SDF format. Can be gzipped (*.gz).') parser.add_argument('-o', '--output', default="cluster", help="Base name for output files in SDF format. " + "e.g. if value is 'output' then files like output1.sdf, output2.sdf will be created") parser.add_argument('--gzip', action='store_true', help='Gzip the outputs generating files like output1.sdf.gz, output2.sdf.gz') parser.add_argument('-t', '--threshold', type=float, default=0.8, help='Clustering threshold') args = parser.parse_args() utils.log("SuCOS Cluster Args: ", args) input_file = utils.open_file_for_reading(args.input) suppl = Chem.ForwardSDMolSupplier(input_file) mols = list(suppl) matrix = calc_distance_matrix(mols) clusters = cluster(matrix, threshold=args.threshold) write_clusters_to_sdfs(mols, clusters, args.output, gzip=args.gzip) if __name__ == "__main__": main()