Mercurial > repos > bgruening > svm_classifier
view svm.xml @ 16:b8d4f843212c draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 76583c1fcd9d06a4679cc46ffaee44117b9e22cd
author | bgruening |
---|---|
date | Sat, 04 Aug 2018 12:30:32 -0400 |
parents | eaccbf2c2891 |
children |
line wrap: on
line source
<tool id="svm_classifier" name="Support vector machines (SVMs)" version="@VERSION@"> <description>for classification</description> <macros> <import>main_macros.xml</import> <!-- macro name="class_weight" argument="class_weight"--> </macros> <expand macro="python_requirements"/> <expand macro="macro_stdio"/> <version_command>echo "@VERSION@"</version_command> <command><![CDATA[ python "$svc_script" '$inputs' ]]> </command> <configfiles> <inputs name="inputs"/> <configfile name="svc_script"> <![CDATA[ import sys import json import numpy as np import sklearn.svm import pandas import pickle @COLUMNS_FUNCTION@ @GET_X_y_FUNCTION@ input_json_path = sys.argv[1] with open(input_json_path, "r") as param_handler: params = json.load(param_handler) #if $selected_tasks.selected_task == "load": with open("$infile_model", 'rb') as model_handler: classifier_object = pickle.load(model_handler) header = 'infer' if params["selected_tasks"]["header"] else None data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=header, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False) prediction = classifier_object.predict(data) prediction_df = pandas.DataFrame(prediction) res = pandas.concat([data, prediction_df], axis=1) res.to_csv(path_or_buf = "$outfile_predict", sep="\t", index=False) #else: X, y = get_X_y(params, "$selected_tasks.selected_algorithms.input_options.infile1" ,"$selected_tasks.selected_algorithms.input_options.infile2") options = params["selected_tasks"]["selected_algorithms"]["options"] selected_algorithm = params["selected_tasks"]["selected_algorithms"]["selected_algorithm"] if not(selected_algorithm=="LinearSVC"): if options["kernel"]: options["kernel"] = str(options["kernel"]) my_class = getattr(sklearn.svm, selected_algorithm) classifier_object = my_class(**options) classifier_object.fit(X, y) with open("$outfile_fit", 'wb') as out_handler: pickle.dump(classifier_object, out_handler) #end if ]]> </configfile> </configfiles> <inputs> <expand macro="sl_Conditional" model="zip"> <param name="selected_algorithm" type="select" label="Classifier type"> <option value="SVC">C-Support Vector Classification</option> <option value="NuSVC">Nu-Support Vector Classification</option> <option value="LinearSVC">Linear Support Vector Classification</option> </param> <when value="SVC"> <expand macro="sl_mixed_input"/> <expand macro="svc_advanced_options"> <expand macro="C"/> </expand> </when> <when value="NuSVC"> <expand macro="sl_mixed_input"/> <expand macro="svc_advanced_options"> <param argument="nu" type="float" optional="true" value="0.5" label="Nu control parameter" help="Controls the number of support vectors. Should be in the interval (0, 1]. "/> </expand> </when> <when value="LinearSVC"> <expand macro="sl_mixed_input"/> <section name="options" title="Advanced Options" expanded="False"> <expand macro="C"/> <expand macro="tol" default_value="0.001" help_text="Tolerance for stopping criterion. "/> <expand macro="random_state" help_text="Integer number. The seed of the pseudo random number generator to use when shuffling the data for probability estimation. A fixed seed allows reproducible results."/> <!--expand macro="class_weight"/--> <param argument="max_iter" type="integer" optional="true" value="1000" label="Maximum number of iterations" help="The maximum number of iterations to be run."/> <param argument="loss" type="select" label="Loss function" help="Specifies the loss function. ''squared_hinge'' is the square of the hinge loss."> <option value="squared_hinge" selected="true">Squared hinge</option> <option value="hinge">Hinge</option> </param> <param argument="penalty" type="select" label="Penalization norm" help=" "> <option value="l1" >l1</option> <option value="l2" selected="true">l2</option> </param> <param argument="dual" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Use the shrinking heuristic" help="Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features."/> <param argument="multi_class" type="select" label="Multi-class strategy" help="Determines the multi-class strategy if y contains more than two classes."> <option value="ovr" selected="true">ovr</option> <option value="crammer_singer" >crammer_singer</option> </param> <param argument="fit_intercept" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Calculate the intercept for this model" help="If set to false, data is expected to be already centered."/> <param argument="intercept_scaling" type="float" optional="true" value="1" label="Add synthetic feature to the instance vector" help=" "/> </section> </when> </expand> </inputs> <expand macro="output"/> <tests> <test> <param name="infile1" value="train_set.tabular" ftype="tabular"/> <param name="infile2" value="train_set.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="header2" value="True"/> <param name="col1" value="1,2,3,4"/> <param name="col2" value="5"/> <param name="selected_task" value="train"/> <param name="selected_algorithm" value="SVC"/> <param name="random_state" value="5"/> <output name="outfile_fit" file="svc_model01.txt"/> </test> <test> <param name="infile1" value="train_set.tabular" ftype="tabular"/> <param name="infile2" value="train_set.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="header2" value="True"/> <param name="col1" value="1,2,3,4"/> <param name="col2" value="5"/> <param name="selected_task" value="train"/> <param name="selected_algorithm" value="NuSVC"/> <param name="random_state" value="5"/> <output name="outfile_fit" file="svc_model02.txt"/> </test> <test> <param name="infile1" value="train_set.tabular" ftype="tabular"/> <param name="infile2" value="train_set.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="header2" value="True"/> <param name="col1" value="1,2,3,4"/> <param name="col2" value="5"/> <param name="selected_task" value="train"/> <param name="selected_algorithm" value="LinearSVC"/> <param name="random_state" value="5"/> <output name="outfile_fit" file="svc_model03.txt"/> </test> <test> <param name="infile_model" value="svc_model01.txt" ftype="txt"/> <param name="infile_data" value="test_set.tabular" ftype="tabular"/> <param name="header" value="True"/> <param name="selected_task" value="load"/> <output name="outfile_predict" file="svc_prediction_result01.tabular"/> </test> <test> <param name="infile_model" value="svc_model02.txt" ftype="txt"/> <param name="infile_data" value="test_set.tabular" ftype="tabular"/> <param name="header" value="True"/> <param name="selected_task" value="load"/> <output name="outfile_predict" file="svc_prediction_result02.tabular"/> </test> <test> <param name="infile_model" value="svc_model03.txt" ftype="txt"/> <param name="infile_data" value="test_set.tabular" ftype="tabular"/> <param name="header" value="True"/> <param name="selected_task" value="load"/> <output name="outfile_predict" file="svc_prediction_result03.tabular"/> </test> </tests> <help><![CDATA[ **What it does** This module implements the Support Vector Machine (SVM) classification algorithms. Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection. **The advantages of support vector machines are:** 1- Effective in high dimensional spaces. 2- Still effective in cases where number of dimensions is greater than the number of samples. 3- Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient. 4- Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided, but it is also possible to specify custom kernels. **The disadvantages of support vector machines include:** 1- If the number of features is much greater than the number of samples, the method is likely to give poor performances. 2- SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-validation For more information check http://scikit-learn.org/stable/modules/neighbors.html ]]> </help> <expand macro="sklearn_citation"/> </tool>