Mercurial > repos > bgruening > tiara
view tiara.xml @ 0:3f33a8ac8891 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/tiara commit 3e174d7bc4280c835f5092a44d259cc33f0b54b6
author | bgruening |
---|---|
date | Thu, 30 May 2024 11:10:39 +0000 |
parents | |
children | 66058890173e |
line wrap: on
line source
<tool id="tiara" name="tiara" version="@TOOL_VERSION@+galaxy0" profile="21.05"> <description>Deep-learning-based approach for identification of eukaryotic sequences in the metagenomic data </description> <macros> <import>macros.xml</import> </macros> <expand macro="biotools"/> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ tiara -t \${GALAXY_SLOTS:-4} -i '$input' -o '$output' #if $taxonomy_filter --tf #for $tf in $taxonomy_filter $tf #end for #end if #if $probabilities --pr '$probabilities' #end if #if $min_len -m '$min_len' #end if #if $cutoff_stage1 -p $cutoff_stage1 #if $cutoff_stage2 $cutoff_stage2 #end if #end if #if $advanced_options.advance.customize_kmer_length == 'customize' --k1 $advanced_options.advance.first_stage_kmer --k2 $advanced_options.advance.second_stage_kmer #end if ]]></command> <inputs> <param name="input" type="data" format="fasta" label="input fasta,fasta.gz file"/> <param name="taxonomy_filter" type="select" multiple="true" optional="true" label="Write sequences to fasta,fasta.gz files specified in the arguments to this option." help="all refers to all classes present in input fasta (to separate fasta files)."> <option value="mit">mitochondria</option> <option value="pla">plastid</option> <option value="bac">bacteria</option> <option value="arc">archea</option> <option value="euk">eukarya</option> <option value="unk">unknown</option> <option value="pro">prokarya</option> <option value="all">all</option> </param> <param argument="probabilities" type="boolean" truevalue="--pr" falsevalue="" checked="false" label="Add probabilities of individual classes for each sequence."/> <param argument="min_len" type="integer" value="3000" min="1000" optional="true" label="Minimum length of a sequence. Default: 3000 bp." help="Specify the desired minimum length in base pairs.Default value is 3000 bp and we do not recommend classifying sequences shorter than 1000 bp. "/> <param argument="cutoff_stage1" type="float" value="0.65" min="0.5" max="1" optional="true" label="Probability threshold for the first stage." help="Probability threshold needed for classification in the first stage. Default: 0.65." /> <param argument="cutoff_stage2" type="float" value="0.65" min="0.5" max="1" optional="true" label="Probability threshold for the second stage." help="Probability threshold needed for classification in the second stage. Default: 0.65." /> <section name="advanced_options" title="k-mer" expanded="true"> <conditional name="advance"> <param argument="customize_kmer_length" type="select" label="Advanced options"> <option value="default_options">No, Use param defaults</option> <option value="customize">Yes, See full parameter list</option> </param> <when value="customize"> <param argument="first_stage_kmer" type="select" label="Select k-mer length used in the first stage of classification (Default: 6)."> <option value="4">k-mer length 4</option> <option value="5">k-mer length 5</option> <option value="6" selected="True">default k-mer length</option> </param> <param argument="second_stage_kmer" type="select" label="k-mer length used in the second stage of classification (Default: 7)."> <option value="4">k-mer length 4</option> <option value="5">k-mer length 5</option> <option value="6">k-mer length 6</option> <option value="7" selected="True">default k-mer length</option> </param> </when> <when value="default_options"> <!-- Define actions or defaults for the default option if necessary --> </when> </conditional> </section> </inputs> <outputs> <data name="output" format="txt" label="${tool.name} on ${on_string}: sequence ID, classification results"/> </outputs> <tests> <test expect_num_outputs="1"> <param name="input" value="plast_fr.fasta.gz"/> <param name="taxonomy_filter" value="pla"/> <output name="output" ftype="txt"> <assert_contents> <has_text_matching expression=".*sequence_id*"/> <has_n_lines n="11" delta="5"/> </assert_contents> </output> </test> <test expect_num_outputs="1"> <param name="input" value="mitplas1.fasta"/> <param name="taxonomy_filter" value="pla,mit"/> <output name="output" ftype="txt"> <assert_contents> <has_text_matching expression=".*sequence_id*"/> <has_n_lines n="30" delta="5"/> </assert_contents> </output> </test> <test expect_num_outputs="1"> <param name="input" value="sample_all.fasta"/> <param name="taxonomy_filter" value="all"/> <output name="output" ftype="txt"> <assert_contents> <has_text_matching expression=".*sequence_id*"/> <has_n_lines n="51" delta="5"/> </assert_contents> </output> </test> <test expect_num_outputs="1"> <param name="input" value="sample_all.fasta"/> <param name="taxonomy_filter" value="euk,bac,arc,unk"/> <output name="output" ftype="txt"> <assert_contents> <has_text_matching expression=".*sequence_id*"/> <has_n_lines n="51" delta="5"/> </assert_contents> </output> </test> <test expect_num_outputs="1"> <param name="input" value="eukarya_fr.fasta"/> <param name="taxonomy_filter" value="euk"/> <param name="min_len" value="5000"/> <param name="cutoff_stage1" value="0.65"/> <param name="cutoff_stage2" value="0.60"/> <output name="output" ftype="txt"> <assert_contents> <has_text_matching expression=".*sequence_id*"/> <has_n_lines n="11" delta="5"/> </assert_contents> </output> </test> <test expect_num_outputs="1"> <param name="input" value="bacteria_fr.fasta"/> <param name="taxonomy_filter" value="bac"/> <param name="min_len" value="5000"/> <param name="cutoff_stage1" value="0.65"/> <param name="cutoff_stage2" value="0.60"/> <param name="probabilities" value="true"/> <output name="output" ftype="txt"> <assert_contents> <has_text_matching expression=".*bac*"/> <has_n_lines n="11" delta="5"/> </assert_contents> </output> </test> </tests> <help><![CDATA[ What it does ============ Tiara is a Deep-learning-based approach for identification of eukaryotic sequences in the metagenomic data powered by PyTorch. How it works ============ The sequences are classified in two stages: First Stage: Input: Sequences are classified into classes: archaea, bacteria, prokarya, eukarya, organelle, and unknown. Output: Classifications for each sequence into one of the above classes. Second Stage: Input: Sequences labeled as organelle from the first stage. Output: Further classification into mitochondria, plastid, or unknown. Required Inputs =============== The primary input for Tiara is metagenomic sequence data that needs classification. Generated Outputs ================= The output will be the sequences categorized into specific classes as described above. Additional Resources ==================== For a more comprehensive understanding of tiara and detailed usage instructions, please visit the tiara GitHub repository: tiara GitHub Repository: [https://github.com/ibe-uw/tiara] ]]></help> <expand macro="citations"/> </tool>