12
|
1 #!/usr/bin/perl
|
|
2
|
|
3 use warnings;
|
|
4 use strict;
|
|
5 use Getopt::Std;
|
|
6
|
|
7
|
|
8
|
|
9 ################################# MIRDEEP #################################################
|
|
10
|
|
11 ################################## USAGE ##################################################
|
|
12
|
|
13
|
|
14 my $usage=
|
|
15 "$0 file_signature file_structure temp_out_directory
|
|
16
|
|
17 This is the core algorithm of miRDeep. It takes as input a file in blastparsed format with
|
|
18 information on the positions of reads aligned to potential precursor sequences (signature).
|
|
19 It also takes as input an RNAfold output file, giving information on the sequence, structure
|
|
20 and mimimum free energy of the potential precursor sequences.
|
|
21
|
|
22 Extra arguments can be given. -s specifies a fastafile containing the known mature miRNA
|
|
23 sequences that should be considered for conservation purposes. -t prints out the potential
|
|
24 precursor sequences that do _not_ exceed the cut-off (default prints out the sequences that
|
|
25 exceeds the cut-off). -u gives limited output, that is only the ids of the potential precursors
|
|
26 that exceed the cut-off. -v varies the cut-off. -x is a sensitive option for Sanger sequences
|
|
27 obtained through conventional cloning. -z consider the number of base pairings in the lower
|
|
28 stems (this option is not well tested).
|
|
29
|
|
30 -h print this usage
|
|
31 -s fasta file with known miRNAs
|
|
32 #-o temp directory ,maked befor running the program.
|
|
33 -t print filtered
|
|
34 -u limited output (only ids)
|
|
35 -v cut-off (default 1)
|
|
36 -x sensitive option for Sanger sequences
|
|
37 -y use Randfold
|
|
38 -z consider Drosha processing
|
|
39 ";
|
|
40
|
|
41
|
|
42
|
|
43
|
|
44
|
|
45 ############################################################################################
|
|
46
|
|
47 ################################### INPUT ##################################################
|
|
48
|
|
49
|
|
50 #signature file in blast_parsed format
|
|
51 my $file_blast_parsed=shift or die $usage;
|
|
52
|
|
53 #structure file outputted from RNAfold
|
|
54 my $file_struct=shift or die $usage;
|
|
55
|
|
56 my $tmpdir=shift or die $usage;
|
|
57 #options
|
|
58 my %options=();
|
|
59 getopts("hs:tuv:xyz",\%options);
|
|
60
|
|
61
|
|
62
|
|
63
|
|
64
|
|
65
|
|
66 #############################################################################################
|
|
67
|
|
68 ############################# GLOBAL VARIABLES ##############################################
|
|
69
|
|
70
|
|
71 #parameters
|
|
72 my $nucleus_lng=11;
|
|
73
|
|
74 my $score_star=3.9;
|
|
75 my $score_star_not=-1.3;
|
|
76 my $score_nucleus=7.63;
|
|
77 my $score_nucleus_not=-1.17;
|
|
78 my $score_randfold=1.37;
|
|
79 my $score_randfold_not=-3.624;
|
|
80 my $score_intercept=0.3;
|
|
81 my @scores_stem=(-3.1,-2.3,-2.2,-1.6,-1.5,0.1,0.6,0.8,0.9,0.9,0);
|
|
82 my $score_min=1;
|
|
83 if($options{v}){$score_min=$options{v};}
|
|
84 if($options{x}){$score_min=-5;}
|
|
85
|
|
86 my $e=2.718281828;
|
|
87
|
|
88 #hashes
|
|
89 my %hash_desc;
|
|
90 my %hash_seq;
|
|
91 my %hash_struct;
|
|
92 my %hash_mfe;
|
|
93 my %hash_nuclei;
|
|
94 my %hash_mirs;
|
|
95 my %hash_query;
|
|
96 my %hash_comp;
|
|
97 my %hash_bp;
|
|
98
|
|
99 #other variables
|
|
100 my $subject_old;
|
|
101 my $message_filter;
|
|
102 my $message_score;
|
|
103 my $lines;
|
|
104 my $out_of_bound;
|
|
105
|
|
106
|
|
107
|
|
108 ##############################################################################################
|
|
109
|
|
110 ################################ MAIN ######################################################
|
|
111
|
|
112
|
|
113 #print help if that option is used
|
|
114 if($options{h}){die $usage;}
|
|
115 unless ($tmpdir=~/\/$/) {$tmpdir .="/";}
|
|
116 if(!(-s $tmpdir)){mkdir $tmpdir;}
|
|
117 $tmpdir .="TMP_DIR/";
|
|
118 mkdir $tmpdir;
|
|
119
|
|
120 #parse structure file outputted from RNAfold
|
|
121 parse_file_struct($file_struct);
|
|
122
|
|
123 #if conservation is scored, the fasta file of known miRNA sequences is parsed
|
|
124 if($options{s}){create_hash_nuclei($options{s})};
|
|
125
|
|
126 #parse signature file in blast_parsed format and resolve each potential precursor
|
|
127 parse_file_blast_parsed($file_blast_parsed);
|
|
128 `rm -rf $tmpdir`;
|
|
129 exit;
|
|
130
|
|
131
|
|
132
|
|
133
|
|
134 ##############################################################################################
|
|
135
|
|
136 ############################## SUBROUTINES ###################################################
|
|
137
|
|
138
|
|
139
|
|
140 sub parse_file_blast_parsed{
|
|
141
|
|
142 # read through the signature blastparsed file, fills up a hash with information on queries
|
|
143 # (deep sequences) mapping to the current subject (potential precursor) and resolve each
|
|
144 # potential precursor in turn
|
|
145
|
|
146 my $file_blast_parsed=shift;
|
|
147
|
|
148 open (FILE_BLAST_PARSED, "<$file_blast_parsed") or die "can not open $file_blast_parsed\n";
|
|
149 while (my $line=<FILE_BLAST_PARSED>){
|
|
150 if($line=~/^(\S+)\s+(\S+)\s+(\d+)\.+(\d+)\s+(\S+)\s+(\S+)\s+(\d+)\.+(\d+)\s+(\S+)\s+(\S+)\s+(\S+)\s+(.+)$/){
|
|
151 my $query=$1;
|
|
152 my $query_lng=$2;
|
|
153 my $query_beg=$3;
|
|
154 my $query_end=$4;
|
|
155 my $subject=$5;
|
|
156 my $subject_lng=$6;
|
|
157 my $subject_beg=$7;
|
|
158 my $subject_end=$8;
|
|
159 my $e_value=$9;
|
|
160 my $pid=$10;
|
|
161 my $bitscore=$11;
|
|
162 my $other=$12;
|
|
163
|
|
164 #if the new line concerns a new subject (potential precursor) then the old subject must be resolved
|
|
165 if($subject_old and $subject_old ne $subject){
|
|
166 resolve_potential_precursor();
|
|
167 }
|
|
168
|
|
169 #resolve the strand
|
|
170 my $strand=find_strand($other);
|
|
171
|
|
172 #resolve the number of reads that the deep sequence represents
|
|
173 my $freq=find_freq($query);
|
|
174
|
|
175 #read information of the query (deep sequence) into hash
|
|
176 $hash_query{$query}{"subject_beg"}=$subject_beg;
|
|
177 $hash_query{$query}{"subject_end"}=$subject_end;
|
|
178 $hash_query{$query}{"strand"}=$strand;
|
|
179 $hash_query{$query}{"freq"}=$freq;
|
|
180
|
|
181 #save the signature information
|
|
182 $lines.=$line;
|
|
183
|
|
184 $subject_old=$subject;
|
|
185 }
|
|
186 }
|
|
187 resolve_potential_precursor();
|
|
188 }
|
|
189
|
|
190 sub resolve_potential_precursor{
|
|
191
|
|
192 # dissects the potential precursor in parts by filling hashes, and tests if it passes the
|
|
193 # initial filter and the scoring filter
|
|
194
|
|
195 # binary variable whether the potential precursor is still viable
|
|
196 my $ret=1;
|
|
197 #print STDERR ">$subject_old\n";
|
|
198
|
|
199 fill_structure();
|
|
200 #print STDERR "\%hash_bp",scalar keys %hash_bp,"\n";
|
|
201 fill_pri();
|
|
202 #print STDERR "\%hash_comp",scalar keys %hash_comp,"\n";
|
|
203
|
|
204 fill_mature();
|
|
205 #print STDERR "\%hash_comp",scalar keys %hash_comp,"\n";
|
|
206
|
|
207 fill_star();
|
|
208 #print STDERR "\%hash_comp",scalar keys %hash_comp,"\n";
|
|
209
|
|
210 fill_loop();
|
|
211 #print STDERR "\%hash_comp",scalar keys %hash_comp,"\n";
|
|
212
|
|
213 fill_lower_flanks();
|
|
214 #print STDERR "\%hash_comp",scalar keys %hash_comp,"\n";
|
|
215
|
|
216 # do_test_assemble();
|
|
217
|
|
218 # this is the actual classification
|
|
219 unless(pass_filtering_initial() and pass_threshold_score()){$ret=0;}
|
|
220
|
|
221 print_results($ret);
|
|
222
|
|
223 reset_variables();
|
|
224
|
|
225 return;
|
|
226
|
|
227 }
|
|
228
|
|
229
|
|
230
|
|
231 sub print_results{
|
|
232
|
|
233 my $ret=shift;
|
|
234
|
|
235 # print out if the precursor is accepted and accepted precursors should be printed out
|
|
236 # or if the potential precursor is discarded and discarded potential precursors should
|
|
237 # be printed out
|
|
238
|
|
239 if((!$options{t} and $ret) or ($options{t} and !$ret)){
|
|
240 #full output
|
|
241 unless($options{u}){
|
|
242 if($message_filter){print $message_filter;}
|
|
243 if($message_score){print $message_score;}
|
|
244 print_hash_comp();
|
|
245 print $lines,"\n\n";
|
|
246 return;
|
|
247 }
|
|
248 #limited output (only ids)
|
|
249 my $id=$hash_comp{"pri_id"};
|
|
250 print "$id\n";
|
|
251 }
|
|
252 }
|
|
253
|
|
254
|
|
255
|
|
256
|
|
257
|
|
258
|
|
259
|
|
260 sub pass_threshold_score{
|
|
261
|
|
262 # this is the scoring
|
|
263
|
|
264 #minimum free energy of the potential precursor
|
|
265 # my $score_mfe=score_mfe($hash_comp{"pri_mfe"});
|
|
266 my $score_mfe=score_mfe($hash_comp{"pri_mfe"},$hash_comp{"pri_end"});
|
|
267
|
|
268 #count of reads that map in accordance with Dicer processing
|
|
269 my $score_freq=score_freq($hash_comp{"freq"});
|
|
270 #print STDERR "score_mfe: $score_mfe\nscore_freq: $score_freq\n";
|
|
271
|
|
272 #basic score
|
|
273 my $score=$score_mfe+$score_freq;
|
|
274
|
|
275 #scoring of conserved nucleus/seed (optional)
|
|
276 if($options{s}){
|
|
277
|
|
278 #if the nucleus is conserved
|
|
279 if(test_nucleus_conservation()){
|
|
280
|
|
281 #nucleus from position 2-8
|
|
282 my $nucleus=substr($hash_comp{"mature_seq"},1,$nucleus_lng);
|
|
283
|
|
284 #resolve DNA/RNA ambiguities
|
|
285 $nucleus=~tr/[T]/[U]/;
|
|
286
|
|
287 #print score contribution
|
|
288 score_s("score_nucleus\t$score_nucleus");
|
|
289
|
|
290 #print the ids of known miRNAs with same nucleus
|
|
291 score_s("$hash_mirs{$nucleus}");
|
|
292 #print STDERR "score_nucleus\t$score_nucleus\n";
|
|
293
|
|
294 #add to score
|
|
295 $score+=$score_nucleus;
|
|
296
|
|
297 #if the nucleus is not conserved
|
|
298 }else{
|
|
299 #print (negative) score contribution
|
|
300 score_s("score_nucleus\t$score_nucleus_not");
|
|
301
|
|
302 #add (negative) score contribution
|
|
303 $score+=$score_nucleus_not;
|
|
304 }
|
|
305 }
|
|
306
|
|
307 #if the majority of potential star reads fall as expected from Dicer processing
|
|
308 if($hash_comp{"star_read"}){
|
|
309 score_s("score_star\t$score_star");
|
|
310 #print STDERR "score_star\t$score_star\n";
|
|
311 $score+=$score_star;
|
|
312 }else{
|
|
313 score_s("score_star\t$score_star_not");
|
|
314 #print STDERR "score_star_not\t$score_star_not\n";
|
|
315 $score+=$score_star_not;
|
|
316 }
|
|
317
|
|
318 #score lower stems for potential for Drosha recognition (highly optional)
|
|
319 if($options{z}){
|
|
320 my $stem_bp=$hash_comp{"stem_bp"};
|
|
321 my $score_stem=$scores_stem[$stem_bp];
|
|
322 $score+=$score_stem;
|
|
323 score_s("score_stem\t$score_stem");
|
|
324 }
|
|
325
|
|
326 #print STDERR "score_intercept\t$score_intercept\n";
|
|
327
|
|
328 $score+=$score_intercept;
|
|
329
|
|
330 #score for randfold (optional)
|
|
331 if($options{y}){
|
|
332
|
|
333 # only calculate randfold value if it can make the difference between the potential precursor
|
|
334 # being accepted or discarded
|
|
335 if($score+$score_randfold>=$score_min and $score+$score_randfold_not<=$score_min){
|
|
336
|
|
337 #randfold value<0.05
|
|
338 if(test_randfold()){$score+=$score_randfold;score_s("score_randfold\t$score_randfold");}
|
|
339
|
|
340 #randfold value>0.05
|
|
341 else{$score+=$score_randfold_not;score_s("score_randfold\t$score_randfold_not");}
|
|
342 }
|
|
343 }
|
|
344
|
|
345 #round off values to one decimal
|
|
346 my $round_mfe=round($score_mfe*10)/10;
|
|
347 my $round_freq=round($score_freq*10)/10;
|
|
348 my $round=round($score*10)/10;
|
|
349
|
|
350 #print scores
|
|
351 score_s("score_mfe\t$round_mfe\nscore_freq\t$round_freq\nscore\t$round");
|
|
352
|
|
353 #return 1 if the potential precursor is accepted, return 0 if discarded
|
|
354 unless($score>=$score_min){return 0;}
|
|
355 return 1;
|
|
356 }
|
|
357
|
|
358 sub test_randfold{
|
|
359
|
|
360 #print sequence to temporary file, test randfold value, return 1 or 0
|
|
361
|
|
362 # print_file("pri_seq.fa",">pri_seq\n".$hash_comp{"pri_seq"});
|
|
363 my $tmpfile=$tmpdir.$hash_comp{"pri_id"};
|
|
364 open(FILE, ">$tmpfile");
|
|
365 print FILE ">pri_seq\n",$hash_comp{"pri_seq"};
|
|
366 close FILE;
|
|
367
|
|
368 # my $p_value=`randfold -s $tmpfile 999 | cut -f 3`;
|
|
369 my $p1=`randfold -s $tmpfile 999 | cut -f 3`;
|
|
370 my $p2=`randfold -s $tmpfile 999 | cut -f 3`;
|
|
371 my $p_value=($p1+$p2)/2;
|
|
372 wait;
|
|
373 # system "rm $tmpfile";
|
|
374
|
|
375 if($p_value<=0.05){return 1;}
|
|
376
|
|
377 return 0;
|
|
378 }
|
|
379
|
|
380
|
|
381 #sub print_file{
|
|
382
|
|
383 #print string to file
|
|
384
|
|
385 # my($file,$string)=@_;
|
|
386
|
|
387 # open(FILE, ">$file");
|
|
388 # print FILE "$string";
|
|
389 # close FILE;
|
|
390 #}
|
|
391
|
|
392
|
|
393 sub test_nucleus_conservation{
|
|
394
|
|
395 #test if nucleus is identical to nucleus from known miRNA, return 1 or 0
|
|
396
|
|
397 my $nucleus=substr($hash_comp{"mature_seq"},1,$nucleus_lng);
|
|
398 $nucleus=~tr/[T]/[U]/;
|
|
399 if($hash_nuclei{$nucleus}){return 1;}
|
|
400
|
|
401 return 0;
|
|
402 }
|
|
403
|
|
404
|
|
405
|
|
406 sub pass_filtering_initial{
|
|
407
|
|
408 #test if the structure forms a plausible hairpin
|
|
409 unless(pass_filtering_structure()){filter_p("structure problem"); return 0;}
|
|
410
|
|
411 #test if >90% of reads map to the hairpin in consistence with Dicer processing
|
|
412 unless(pass_filtering_signature()){filter_p("signature problem");return 0;}
|
|
413
|
|
414 return 1;
|
|
415
|
|
416 }
|
|
417
|
|
418
|
|
419 sub pass_filtering_signature{
|
|
420
|
|
421 #number of reads that map in consistence with Dicer processing
|
|
422 my $consistent=0;
|
|
423
|
|
424 #number of reads that map inconsistent with Dicer processing
|
|
425 my $inconsistent=0;
|
|
426
|
|
427 # number of potential star reads map in good consistence with Drosha/Dicer processing
|
|
428 # (3' overhangs relative to mature product)
|
|
429 my $star_perfect=0;
|
|
430
|
|
431 # number of potential star reads that do not map in good consistence with 3' overhang
|
|
432 my $star_fuzzy=0;
|
|
433
|
|
434
|
|
435 #sort queries (deep sequences) by their position on the hairpin
|
|
436 my @queries=sort {$hash_query{$a}{"subject_beg"} <=> $hash_query{$b}{"subject_beg"}} keys %hash_query;
|
|
437
|
|
438 foreach my $query(@queries){
|
|
439
|
|
440 #number of reads that the deep sequence represents
|
|
441 unless(defined($hash_query{$query}{"freq"})){next;}
|
|
442 my $query_freq=$hash_query{$query}{"freq"};
|
|
443
|
|
444 #test which Dicer product (if any) the deep sequence corresponds to
|
|
445 my $product=test_query($query);
|
|
446
|
|
447 #if the deep sequence corresponds to a Dicer product, add to the 'consistent' variable
|
|
448 if($product){$consistent+=$query_freq;}
|
|
449
|
|
450 #if the deep sequence do not correspond to a Dicer product, add to the 'inconsistent' variable
|
|
451 else{$inconsistent+=$query_freq;}
|
|
452
|
|
453 #test a potential star sequence has good 3' overhang
|
|
454 if($product eq "star"){
|
|
455 if(test_star($query)){$star_perfect+=$query_freq;}
|
|
456 else{$star_fuzzy+=$query_freq;}
|
|
457 }
|
|
458 }
|
|
459
|
|
460 # if the majority of potential star sequences map in good accordance with 3' overhang
|
|
461 # score for the presence of star evidence
|
|
462 if($star_perfect>$star_fuzzy){$hash_comp{"star_read"}=1;}
|
|
463
|
|
464 #total number of reads mapping to the hairpin
|
|
465 my $freq=$consistent+$inconsistent;
|
|
466 $hash_comp{"freq"}=$freq;
|
|
467 unless($freq>0){filter_s("read frequency too low"); return 0;}
|
|
468
|
|
469 #unless >90% of the reads map in consistence with Dicer processing, the hairpin is discarded
|
|
470 my $inconsistent_fraction=$inconsistent/($inconsistent+$consistent);
|
|
471 unless($inconsistent_fraction<=0.1){filter_p("inconsistent\t$inconsistent\nconsistent\t$consistent"); return 0;}
|
|
472
|
|
473 #the hairpin is retained
|
|
474 return 1;
|
|
475 }
|
|
476
|
|
477 sub test_star{
|
|
478
|
|
479 #test if a deep sequence maps in good consistence with 3' overhang
|
|
480
|
|
481 my $query=shift;
|
|
482
|
|
483 #5' begin and 3' end positions
|
|
484 my $beg=$hash_query{$query}{"subject_beg"};
|
|
485 my $end=$hash_query{$query}{"subject_end"};
|
|
486
|
|
487 #the difference between observed and expected begin positions must be 0 or 1
|
|
488 my $offset=$beg-$hash_comp{"star_beg"};
|
|
489 if($offset==0 or $offset==1 or $offset==-1){return 1;}
|
|
490
|
|
491 return 0;
|
|
492 }
|
|
493
|
|
494
|
|
495
|
|
496 sub test_query{
|
|
497
|
|
498 #test if deep sequence maps in consistence with Dicer processing
|
|
499
|
|
500 my $query=shift;
|
|
501
|
|
502 #begin, end, strand and read count
|
|
503 my $beg=$hash_query{$query}{"subject_beg"};
|
|
504 my $end=$hash_query{$query}{"subject_end"};
|
|
505 my $strand=$hash_query{$query}{"strand"};
|
|
506 my $freq=$hash_query{$query}{"freq"};
|
|
507
|
|
508 #should not be on the minus strand (although this has in fact anecdotally been observed for known miRNAs)
|
|
509 if($strand eq '-'){return 0;}
|
|
510
|
|
511 #the deep sequence is allowed to stretch 2 nt beyond the expected 5' end
|
|
512 my $fuzz_beg=2;
|
|
513 #the deep sequence is allowed to stretch 5 nt beyond the expected 3' end
|
|
514 my $fuzz_end=2;
|
|
515
|
|
516 #if in accordance with Dicer processing, return the type of Dicer product
|
|
517 if(contained($beg,$end,$hash_comp{"mature_beg"}-$fuzz_beg,$hash_comp{"mature_end"}+$fuzz_end)){return "mature";}
|
|
518 if(contained($beg,$end,$hash_comp{"star_beg"}-$fuzz_beg,$hash_comp{"star_end"}+$fuzz_end)){return "star";}
|
|
519 if(contained($beg,$end,$hash_comp{"loop_beg"}-$fuzz_beg,$hash_comp{"loop_end"}+$fuzz_end)){return "loop";}
|
|
520
|
|
521 #if not in accordance, return 0
|
|
522 return 0;
|
|
523 }
|
|
524
|
|
525
|
|
526 sub pass_filtering_structure{
|
|
527
|
|
528 #The potential precursor must form a hairpin with miRNA precursor-like characteristics
|
|
529
|
|
530 #return value
|
|
531 my $ret=1;
|
|
532
|
|
533 #potential mature, star, loop and lower flank parts must be identifiable
|
|
534 unless(test_components()){return 0;}
|
|
535
|
|
536 #no bifurcations
|
|
537 unless(no_bifurcations_precursor()){$ret=0;}
|
|
538
|
|
539 #minimum 14 base pairings in duplex
|
|
540 unless(bp_duplex()>=15){$ret=0;filter_s("too few pairings in duplex");}
|
|
541
|
|
542 #not more than 6 nt difference between mature and star length
|
|
543 unless(-6<diff_lng() and diff_lng()<6){$ret=0; filter_s("too big difference between mature and star length") }
|
|
544
|
|
545 return $ret;
|
|
546 }
|
|
547
|
|
548
|
|
549
|
|
550
|
|
551
|
|
552
|
|
553 sub test_components{
|
|
554
|
|
555 #tests whether potential mature, star, loop and lower flank parts are identifiable
|
|
556
|
|
557 unless($hash_comp{"mature_struct"}){
|
|
558 filter_s("no mature");
|
|
559 # print STDERR "no mature\n";
|
|
560 return 0;
|
|
561 }
|
|
562
|
|
563 unless($hash_comp{"star_struct"}){
|
|
564 filter_s("no star");
|
|
565 # print STDERR "no star\n";
|
|
566 return 0;
|
|
567 }
|
|
568
|
|
569 unless($hash_comp{"loop_struct"}){
|
|
570 filter_s("no loop");
|
|
571 # print STDERR "no loop\n";
|
|
572 return 0;
|
|
573 }
|
|
574
|
|
575 unless($hash_comp{"flank_first_struct"}){
|
|
576 filter_s("no flanks");
|
|
577 #print STDERR "no flanks_first_struct\n";
|
|
578 return 0;
|
|
579 }
|
|
580
|
|
581 unless($hash_comp{"flank_second_struct"}){
|
|
582 filter_s("no flanks");
|
|
583 # print STDERR "no flanks_second_struct\n";
|
|
584 return 0;
|
|
585 }
|
|
586 return 1;
|
|
587 }
|
|
588
|
|
589
|
|
590
|
|
591
|
|
592
|
|
593 sub no_bifurcations_precursor{
|
|
594
|
|
595 #tests whether there are bifurcations in the hairpin
|
|
596
|
|
597 #assembles the potential precursor sequence and structure from the expected Dicer products
|
|
598 #this is the expected biological precursor, in contrast with 'pri_seq' that includes
|
|
599 #some genomic flanks on both sides
|
|
600
|
|
601 my $pre_struct;
|
|
602 my $pre_seq;
|
|
603 if($hash_comp{"mature_arm"} eq "first"){
|
|
604 $pre_struct.=$hash_comp{"mature_struct"}.$hash_comp{"loop_struct"}.$hash_comp{"star_struct"};
|
|
605 $pre_seq.=$hash_comp{"mature_seq"}.$hash_comp{"loop_seq"}.$hash_comp{"star_seq"};
|
|
606 }else{
|
|
607 $pre_struct.=$hash_comp{"star_struct"}.$hash_comp{"loop_struct"}.$hash_comp{"mature_struct"};
|
|
608 $pre_seq.=$hash_comp{"star_seq"}.$hash_comp{"loop_seq"}.$hash_comp{"mature_seq"};
|
|
609 }
|
|
610
|
|
611 #read into hash
|
|
612 $hash_comp{"pre_struct"}=$pre_struct;
|
|
613 $hash_comp{"pre_seq"}=$pre_seq;
|
|
614
|
|
615 #simple pattern matching checks for bifurcations
|
|
616 unless($pre_struct=~/^((\.|\()+..(\.|\))+)$/){
|
|
617 filter_s("bifurcation in precursor");
|
|
618 # print STDERR "bifurcation in precursor\n";
|
|
619 return 0;
|
|
620 }
|
|
621
|
|
622 return 1;
|
|
623 }
|
|
624
|
|
625 sub bp_precursor{
|
|
626
|
|
627 #total number of bps in the precursor
|
|
628
|
|
629 my $pre_struct=$hash_comp{"pre_struct"};
|
|
630
|
|
631 #simple pattern matching
|
|
632 my $pre_bps=0;
|
|
633 while($pre_struct=~/\(/g){
|
|
634 $pre_bps++;
|
|
635 }
|
|
636 return $pre_bps;
|
|
637 }
|
|
638
|
|
639
|
|
640 sub bp_duplex{
|
|
641
|
|
642 #total number of bps in the duplex
|
|
643
|
|
644 my $duplex_bps=0;
|
|
645 my $mature_struct=$hash_comp{"mature_struct"};
|
|
646
|
|
647 #simple pattern matching
|
|
648 while($mature_struct=~/(\(|\))/g){
|
|
649 $duplex_bps++;
|
|
650 }
|
|
651 return $duplex_bps;
|
|
652 }
|
|
653
|
|
654 sub diff_lng{
|
|
655
|
|
656 #find difference between mature and star lengths
|
|
657
|
|
658 my $mature_lng=length $hash_comp{"mature_struct"};
|
|
659 my $star_lng=length $hash_comp{"star_struct"};
|
|
660 my $diff_lng=$mature_lng-$star_lng;
|
|
661 return $diff_lng;
|
|
662 }
|
|
663
|
|
664
|
|
665
|
|
666 sub do_test_assemble{
|
|
667
|
|
668 # not currently used, tests if the 'pri_struct' as assembled from the parts (Dicer products, lower flanks)
|
|
669 # is identical to 'pri_struct' before disassembly into parts
|
|
670
|
|
671 my $assemble_struct;
|
|
672
|
|
673 if($hash_comp{"flank_first_struct"} and $hash_comp{"mature_struct"} and $hash_comp{"loop_struct"} and $hash_comp{"star_struct"} and $hash_comp{"flank_second_struct"}){
|
|
674 if($hash_comp{"mature_arm"} eq "first"){
|
|
675 $assemble_struct.=$hash_comp{"flank_first_struct"}.$hash_comp{"mature_struct"}.$hash_comp{"loop_struct"}.$hash_comp{"star_struct"}.$hash_comp{"flank_second_struct"};
|
|
676 }else{
|
|
677 $assemble_struct.=$hash_comp{"flank_first_struct"}.$hash_comp{"star_struct"}.$hash_comp{"loop_struct"}.$hash_comp{"mature_struct"}.$hash_comp{"flank_second_struct"};
|
|
678 }
|
|
679 unless($assemble_struct eq $hash_comp{"pri_struct"}){
|
|
680 $hash_comp{"test_assemble"}=$assemble_struct;
|
|
681 print_hash_comp();
|
|
682 }
|
|
683 }
|
|
684 return;
|
|
685 }
|
|
686
|
|
687
|
|
688
|
|
689 sub fill_structure{
|
|
690
|
|
691 #reads the dot bracket structure into the 'bp' hash where each key and value are basepaired
|
|
692
|
|
693 my $struct=$hash_struct{$subject_old};
|
|
694 my $lng=length $struct;
|
|
695
|
|
696 #local stack for keeping track of basepairings
|
|
697 my @bps;
|
|
698
|
|
699 for(my $pos=1;$pos<=$lng;$pos++){
|
|
700 my $struct_pos=excise_struct($struct,$pos,$pos,"+");
|
|
701
|
|
702 if($struct_pos eq "("){
|
|
703 push(@bps,$pos);
|
|
704 }
|
|
705
|
|
706 if($struct_pos eq ")"){
|
|
707 my $pos_prev=pop(@bps);
|
|
708 $hash_bp{$pos_prev}=$pos;
|
|
709 $hash_bp{$pos}=$pos_prev;
|
|
710 }
|
|
711 }
|
|
712 return;
|
|
713 }
|
|
714
|
|
715
|
|
716
|
|
717 sub fill_star{
|
|
718
|
|
719 #fills specifics on the expected star strand into 'comp' hash ('component' hash)
|
|
720
|
|
721 #if the mature sequence is not plausible, don't look for the star arm
|
|
722 my $mature_arm=$hash_comp{"mature_arm"};
|
|
723 unless($mature_arm){$hash_comp{"star_arm"}=0; return;}
|
|
724
|
|
725 #if the star sequence is not plausible, don't fill into the hash
|
|
726 my($star_beg,$star_end)=find_star();
|
|
727 my $star_arm=arm_star($star_beg,$star_end);
|
|
728 unless($star_arm){return;}
|
|
729
|
|
730 #excise expected star sequence and structure
|
|
731 my $star_seq=excise_seq($hash_comp{"pri_seq"},$star_beg,$star_end,"+");
|
|
732 my $star_struct=excise_seq($hash_comp{"pri_struct"},$star_beg,$star_end,"+");
|
|
733
|
|
734 #fill into hash
|
|
735 $hash_comp{"star_beg"}=$star_beg;
|
|
736 $hash_comp{"star_end"}=$star_end;
|
|
737 $hash_comp{"star_seq"}=$star_seq;
|
|
738 $hash_comp{"star_struct"}=$star_struct;
|
|
739 $hash_comp{"star_arm"}=$star_arm;
|
|
740
|
|
741 return;
|
|
742 }
|
|
743
|
|
744
|
|
745 sub find_star{
|
|
746
|
|
747 #uses the 'bp' hash to find the expected star begin and end positions from the mature positions
|
|
748
|
|
749 #the -2 is for the overhang
|
|
750 my $mature_beg=$hash_comp{"mature_beg"};
|
|
751 my $mature_end=$hash_comp{"mature_end"}-2;
|
|
752 my $mature_lng=$mature_end-$mature_beg+1;
|
|
753
|
|
754 #in some cases, the last nucleotide of the mature sequence does not form a base pair,
|
|
755 #and therefore does not basepair with the first nucleotide of the star sequence.
|
|
756 #In this case, the algorithm searches for the last nucleotide of the mature sequence
|
|
757 #to form a base pair. The offset is the number of nucleotides searched through.
|
|
758 my $offset_star_beg=0;
|
|
759 my $offset_beg=0;
|
|
760
|
|
761 #the offset should not be longer than the length of the mature sequence, then it
|
|
762 #means that the mature sequence does not form any base pairs
|
|
763 while(!$offset_star_beg and $offset_beg<$mature_lng){
|
|
764 if($hash_bp{$mature_end-$offset_beg}){
|
|
765 $offset_star_beg=$hash_bp{$mature_end-$offset_beg};
|
|
766 }else{
|
|
767 $offset_beg++;
|
|
768 }
|
|
769 }
|
|
770 #when defining the beginning of the star sequence, compensate for the offset
|
|
771 my $star_beg=$offset_star_beg-$offset_beg;
|
|
772
|
|
773 #same as above
|
|
774 my $offset_star_end=0;
|
|
775 my $offset_end=0;
|
|
776 while(!$offset_star_end and $offset_end<$mature_lng){
|
|
777 if($hash_bp{$mature_beg+$offset_end}){
|
|
778 $offset_star_end=$hash_bp{$mature_beg+$offset_end};
|
|
779 }else{
|
|
780 $offset_end++;
|
|
781 }
|
|
782 }
|
|
783 #the +2 is for the overhang
|
|
784 my $star_end=$offset_star_end+$offset_end+2;
|
|
785
|
|
786 return($star_beg,$star_end);
|
|
787 }
|
|
788
|
|
789
|
|
790 sub fill_pri{
|
|
791
|
|
792 #fills basic specifics on the precursor into the 'comp' hash
|
|
793
|
|
794 my $seq=$hash_seq{$subject_old};
|
|
795 my $struct=$hash_struct{$subject_old};
|
|
796 my $mfe=$hash_mfe{$subject_old};
|
|
797 my $length=length $seq;
|
|
798
|
|
799 $hash_comp{"pri_id"}=$subject_old;
|
|
800 $hash_comp{"pri_seq"}=$seq;
|
|
801 $hash_comp{"pri_struct"}=$struct;
|
|
802 $hash_comp{"pri_mfe"}=$mfe;
|
|
803 $hash_comp{"pri_beg"}=1;
|
|
804 $hash_comp{"pri_end"}=$length;
|
|
805
|
|
806 return;
|
|
807 }
|
|
808
|
|
809
|
|
810 sub fill_mature{
|
|
811
|
|
812 #fills specifics on the mature sequence into the 'comp' hash
|
|
813
|
|
814 my $mature_query=find_mature_query();
|
|
815 my($mature_beg,$mature_end)=find_positions_query($mature_query);
|
|
816 my $mature_strand=find_strand_query($mature_query);
|
|
817 my $mature_seq=excise_seq($hash_comp{"pri_seq"},$mature_beg,$mature_end,$mature_strand);
|
|
818 my $mature_struct=excise_struct($hash_comp{"pri_struct"},$mature_beg,$mature_end,$mature_strand);
|
|
819 my $mature_arm=arm_mature($mature_beg,$mature_end,$mature_strand);
|
|
820
|
|
821 $hash_comp{"mature_query"}=$mature_query;
|
|
822 $hash_comp{"mature_beg"}=$mature_beg;
|
|
823 $hash_comp{"mature_end"}=$mature_end;
|
|
824 $hash_comp{"mature_strand"}=$mature_strand;
|
|
825 $hash_comp{"mature_struct"}=$mature_struct;
|
|
826 $hash_comp{"mature_seq"}=$mature_seq;
|
|
827 $hash_comp{"mature_arm"}=$mature_arm;
|
|
828
|
|
829 return;
|
|
830 }
|
|
831
|
|
832
|
|
833
|
|
834 sub fill_loop{
|
|
835
|
|
836 #fills specifics on the loop sequence into the 'comp' hash
|
|
837
|
|
838 #unless both mature and star sequences are plausible, do not look for the loop
|
|
839 unless($hash_comp{"mature_arm"} and $hash_comp{"star_arm"}){return;}
|
|
840
|
|
841 my $loop_beg;
|
|
842 my $loop_end;
|
|
843
|
|
844 #defining the begin and end positions of the loop from the mature and star positions
|
|
845 #excision depends on whether the mature or star sequence is 5' of the loop ('first')
|
|
846 if($hash_comp{"mature_arm"} eq "first"){
|
|
847 $loop_beg=$hash_comp{"mature_end"}+1;
|
|
848 }else{
|
|
849 $loop_end=$hash_comp{"mature_beg"}-1;
|
|
850 }
|
|
851
|
|
852 if($hash_comp{"star_arm"} eq "first"){
|
|
853 $loop_beg=$hash_comp{"star_end"}+1;
|
|
854 }else{
|
|
855 $loop_end=$hash_comp{"star_beg"}-1;
|
|
856 }
|
|
857
|
|
858 #unless the positions are plausible, do not fill into hash
|
|
859 unless(test_loop($loop_beg,$loop_end)){return;}
|
|
860
|
|
861 my $loop_seq=excise_seq($hash_comp{"pri_seq"},$loop_beg,$loop_end,"+");
|
|
862 my $loop_struct=excise_struct($hash_comp{"pri_struct"},$loop_beg,$loop_end,"+");
|
|
863
|
|
864 $hash_comp{"loop_beg"}=$loop_beg;
|
|
865 $hash_comp{"loop_end"}=$loop_end;
|
|
866 $hash_comp{"loop_seq"}=$loop_seq;
|
|
867 $hash_comp{"loop_struct"}=$loop_struct;
|
|
868
|
|
869 return;
|
|
870 }
|
|
871
|
|
872
|
|
873 sub fill_lower_flanks{
|
|
874
|
|
875 #fills specifics on the lower flanks and unpaired strands into the 'comp' hash
|
|
876
|
|
877 #unless both mature and star sequences are plausible, do not look for the flanks
|
|
878 unless($hash_comp{"mature_arm"} and $hash_comp{"star_arm"}){return;}
|
|
879
|
|
880 my $flank_first_end;
|
|
881 my $flank_second_beg;
|
|
882
|
|
883 #defining the begin and end positions of the flanks from the mature and star positions
|
|
884 #excision depends on whether the mature or star sequence is 5' in the potenitial precursor ('first')
|
|
885 if($hash_comp{"mature_arm"} eq "first"){
|
|
886 $flank_first_end=$hash_comp{"mature_beg"}-1;
|
|
887 }else{
|
|
888 $flank_second_beg=$hash_comp{"mature_end"}+1;
|
|
889 }
|
|
890
|
|
891 if($hash_comp{"star_arm"} eq "first"){
|
|
892 $flank_first_end=$hash_comp{"star_beg"}-1;
|
|
893 }else{
|
|
894 $flank_second_beg=$hash_comp{"star_end"}+1;
|
|
895 }
|
|
896
|
|
897 #unless the positions are plausible, do not fill into hash
|
|
898 unless(test_flanks($flank_first_end,$flank_second_beg)){return;}
|
|
899
|
|
900 $hash_comp{"flank_first_end"}=$flank_first_end;
|
|
901 $hash_comp{"flank_second_beg"}=$flank_second_beg;
|
|
902 $hash_comp{"flank_first_seq"}=excise_seq($hash_comp{"pri_seq"},$hash_comp{"pri_beg"},$hash_comp{"flank_first_end"},"+");
|
|
903 $hash_comp{"flank_second_seq"}=excise_seq($hash_comp{"pri_seq"},$hash_comp{"flank_second_beg"},$hash_comp{"pri_end"},"+");
|
|
904 $hash_comp{"flank_first_struct"}=excise_struct($hash_comp{"pri_struct"},$hash_comp{"pri_beg"},$hash_comp{"flank_first_end"},"+");
|
|
905 $hash_comp{"flank_second_struct"}=excise_struct($hash_comp{"pri_struct"},$hash_comp{"flank_second_beg"},$hash_comp{"pri_end"},"+");
|
|
906
|
|
907 if($options{z}){
|
|
908 fill_stems_drosha();
|
|
909 }
|
|
910
|
|
911 return;
|
|
912 }
|
|
913
|
|
914
|
|
915 sub fill_stems_drosha{
|
|
916
|
|
917 #scores the number of base pairings formed by the first ten nt of the lower stems
|
|
918 #in general, the more stems, the higher the score contribution
|
|
919 #warning: this options has not been thoroughly tested
|
|
920
|
|
921 my $flank_first_struct=$hash_comp{"flank_first_struct"};
|
|
922 my $flank_second_struct=$hash_comp{"flank_second_struct"};
|
|
923
|
|
924 my $stem_first=substr($flank_first_struct,-10);
|
|
925 my $stem_second=substr($flank_second_struct,0,10);
|
|
926
|
|
927 my $stem_bp_first=0;
|
|
928 my $stem_bp_second=0;
|
|
929
|
|
930 #find base pairings by simple pattern matching
|
|
931 while($stem_first=~/\(/g){
|
|
932 $stem_bp_first++;
|
|
933 }
|
|
934
|
|
935 while($stem_second=~/\)/g){
|
|
936 $stem_bp_second++;
|
|
937 }
|
|
938
|
|
939 my $stem_bp=min2($stem_bp_first,$stem_bp_second);
|
|
940
|
|
941 $hash_comp{"stem_first"}=$stem_first;
|
|
942 $hash_comp{"stem_second"}=$stem_second;
|
|
943 $hash_comp{"stem_bp_first"}=$stem_bp_first;
|
|
944 $hash_comp{"stem_bp_second"}=$stem_bp_second;
|
|
945 $hash_comp{"stem_bp"}=$stem_bp;
|
|
946
|
|
947 return;
|
|
948 }
|
|
949
|
|
950
|
|
951
|
|
952
|
|
953 sub arm_mature{
|
|
954
|
|
955 #tests whether the mature sequence is in the 5' ('first') or 3' ('second') arm of the potential precursor
|
|
956
|
|
957 my ($beg,$end,$strand)=@_;
|
|
958
|
|
959 #mature and star sequences should alway be on plus strand
|
|
960 if($strand eq "-"){return 0;}
|
|
961
|
|
962 #there should be no bifurcations and minimum one base pairing
|
|
963 my $struct=excise_seq($hash_comp{"pri_struct"},$beg,$end,$strand);
|
|
964 if(defined($struct) and $struct=~/^(\(|\.)+$/ and $struct=~/\(/){
|
|
965 return "first";
|
|
966 }elsif(defined($struct) and $struct=~/^(\)|\.)+$/ and $struct=~/\)/){
|
|
967 return "second";
|
|
968 }
|
|
969 return 0;
|
|
970 }
|
|
971
|
|
972
|
|
973 sub arm_star{
|
|
974
|
|
975 #tests whether the star sequence is in the 5' ('first') or 3' ('second') arm of the potential precursor
|
|
976
|
|
977 my ($beg,$end)=@_;
|
|
978
|
|
979 #unless the begin and end positions are plausible, test negative
|
|
980 unless($beg>0 and $beg<=$hash_comp{"pri_end"} and $end>0 and $end<=$hash_comp{"pri_end"} and $beg<=$end){return 0;}
|
|
981
|
|
982 #no overlap between the mature and the star sequence
|
|
983 if($hash_comp{"mature_arm"} eq "first"){
|
|
984 ($hash_comp{"mature_end"}<$beg) or return 0;
|
|
985 }elsif($hash_comp{"mature_arm"} eq "second"){
|
|
986 ($end<$hash_comp{"mature_beg"}) or return 0;
|
|
987 }
|
|
988
|
|
989 #there should be no bifurcations and minimum one base pairing
|
|
990 my $struct=excise_seq($hash_comp{"pri_struct"},$beg,$end,"+");
|
|
991 if($struct=~/^(\(|\.)+$/ and $struct=~/\(/){
|
|
992 return "first";
|
|
993 }elsif($struct=~/^(\)|\.)+$/ and $struct=~/\)/){
|
|
994 return "second";
|
|
995 }
|
|
996 return 0;
|
|
997 }
|
|
998
|
|
999
|
|
1000 sub test_loop{
|
|
1001
|
|
1002 #tests the loop positions
|
|
1003
|
|
1004 my ($beg,$end)=@_;
|
|
1005
|
|
1006 #unless the begin and end positions are plausible, test negative
|
|
1007 unless($beg>0 and $beg<=$hash_comp{"pri_end"} and $end>0 and $end<=$hash_comp{"pri_end"} and $beg<=$end){return 0;}
|
|
1008
|
|
1009 return 1;
|
|
1010 }
|
|
1011
|
|
1012
|
|
1013 sub test_flanks{
|
|
1014
|
|
1015 #tests the positions of the lower flanks
|
|
1016
|
|
1017 my ($beg,$end)=@_;
|
|
1018
|
|
1019 #unless the begin and end positions are plausible, test negative
|
|
1020 unless($beg>0 and $beg<=$hash_comp{"pri_end"} and $end>0 and $end<=$hash_comp{"pri_end"} and $beg<=$end){return 0;}
|
|
1021
|
|
1022 return 1;
|
|
1023 }
|
|
1024
|
|
1025
|
|
1026 sub comp{
|
|
1027
|
|
1028 #subroutine to retrive from the 'comp' hash
|
|
1029
|
|
1030 my $type=shift;
|
|
1031 my $component=$hash_comp{$type};
|
|
1032 return $component;
|
|
1033 }
|
|
1034
|
|
1035
|
|
1036 sub find_strand_query{
|
|
1037
|
|
1038 #subroutine to find the strand for a given query
|
|
1039
|
|
1040 my $query=shift;
|
|
1041 my $strand=$hash_query{$query}{"strand"};
|
|
1042 return $strand;
|
|
1043 }
|
|
1044
|
|
1045
|
|
1046 sub find_positions_query{
|
|
1047
|
|
1048 #subroutine to find the begin and end positions for a given query
|
|
1049
|
|
1050 my $query=shift;
|
|
1051 my $beg=$hash_query{$query}{"subject_beg"};
|
|
1052 my $end=$hash_query{$query}{"subject_end"};
|
|
1053 return ($beg,$end);
|
|
1054 }
|
|
1055
|
|
1056
|
|
1057
|
|
1058 sub find_mature_query{
|
|
1059
|
|
1060 #finds the query with the highest frequency of reads and returns it
|
|
1061 #is used to determine the positions of the potential mature sequence
|
|
1062
|
|
1063 my @queries=sort {$hash_query{$b}{"freq"} <=> $hash_query{$a}{"freq"}} keys %hash_query;
|
|
1064 my $mature_query=$queries[0];
|
|
1065 return $mature_query;
|
|
1066 }
|
|
1067
|
|
1068
|
|
1069
|
|
1070
|
|
1071 sub reset_variables{
|
|
1072
|
|
1073 #resets the hashes for the next potential precursor
|
|
1074
|
|
1075 # %hash_query=();
|
|
1076 # %hash_comp=();
|
|
1077 # %hash_bp=();
|
|
1078 foreach my $key (keys %hash_query) {delete($hash_query{$key});}
|
|
1079 foreach my $key (keys %hash_comp) {delete($hash_comp{$key});}
|
|
1080 foreach my $key (keys %hash_bp) {delete($hash_bp{$key});}
|
|
1081
|
|
1082 # $message_filter=();
|
|
1083 # $message_score=();
|
|
1084 # $lines=();
|
|
1085 undef($message_filter);
|
|
1086 undef($message_score);
|
|
1087 undef($lines);
|
|
1088 return;
|
|
1089 }
|
|
1090
|
|
1091
|
|
1092
|
|
1093 sub excise_seq{
|
|
1094
|
|
1095 #excise sub sequence from the potential precursor
|
|
1096
|
|
1097 my($seq,$beg,$end,$strand)=@_;
|
|
1098
|
|
1099 #begin can be equal to end if only one nucleotide is excised
|
|
1100 unless($beg<=$end){print STDERR "begin can not be smaller than end for $subject_old\n";exit;}
|
|
1101
|
|
1102 #rarely, permuted combinations of signature and structure cause out of bound excision errors.
|
|
1103 #this happens once appr. every two thousand combinations
|
|
1104 unless($beg<=length($seq)){$out_of_bound++;return 0;}
|
|
1105
|
|
1106 #if on the minus strand, the reverse complement should be excised
|
|
1107 if($strand eq "-"){$seq=revcom($seq);}
|
|
1108
|
|
1109 #the blast parsed format is 1-indexed, substr is 0-indexed
|
|
1110 my $sub_seq=substr($seq,$beg-1,$end-$beg+1);
|
|
1111
|
|
1112 return $sub_seq;
|
|
1113
|
|
1114 }
|
|
1115
|
|
1116 sub excise_struct{
|
|
1117
|
|
1118 #excise sub structure
|
|
1119
|
|
1120 my($struct,$beg,$end,$strand)=@_;
|
|
1121 my $lng=length $struct;
|
|
1122
|
|
1123 #begin can be equal to end if only one nucleotide is excised
|
|
1124 unless($beg<=$end){print STDERR "begin can not be smaller than end for $subject_old\n";exit;}
|
|
1125
|
|
1126 #rarely, permuted combinations of signature and structure cause out of bound excision errors.
|
|
1127 #this happens once appr. every two thousand combinations
|
|
1128 unless($beg<=length($struct)){return 0;}
|
|
1129
|
|
1130 #if excising relative to minus strand, positions are reversed
|
|
1131 if($strand eq "-"){($beg,$end)=rev_pos($beg,$end,$lng);}
|
|
1132
|
|
1133 #the blast parsed format is 1-indexed, substr is 0-indexed
|
|
1134 my $sub_struct=substr($struct,$beg-1,$end-$beg+1);
|
|
1135
|
|
1136 return $sub_struct;
|
|
1137 }
|
|
1138
|
|
1139
|
|
1140 sub create_hash_nuclei{
|
|
1141 #parses a fasta file with sequences of known miRNAs considered for conservation purposes
|
|
1142 #reads the nuclei into a hash
|
|
1143
|
|
1144 my ($file) = @_;
|
|
1145 my ($id, $desc, $sequence, $nucleus) = ();
|
|
1146
|
|
1147 open (FASTA, "<$file") or die "can not open $file\n";
|
|
1148 while (<FASTA>)
|
|
1149 {
|
|
1150 chomp;
|
|
1151 if (/^>(\S+)(.*)/)
|
|
1152 {
|
|
1153 $id = $1;
|
|
1154 $desc = $2;
|
|
1155 $sequence = "";
|
|
1156 $nucleus = "";
|
|
1157 while (<FASTA>){
|
|
1158 chomp;
|
|
1159 if (/^>(\S+)(.*)/){
|
|
1160 $nucleus = substr($sequence,1,$nucleus_lng);
|
|
1161 $nucleus =~ tr/[T]/[U]/;
|
|
1162 $hash_mirs{$nucleus} .="$id\t";
|
|
1163 $hash_nuclei{$nucleus} += 1;
|
|
1164
|
|
1165 $id = $1;
|
|
1166 $desc = $2;
|
|
1167 $sequence = "";
|
|
1168 $nucleus = "";
|
|
1169 next;
|
|
1170 }
|
|
1171 $sequence .= $_;
|
|
1172 }
|
|
1173 }
|
|
1174 }
|
|
1175 $nucleus = substr($sequence,1,$nucleus_lng);
|
|
1176 $nucleus =~ tr/[T]/[U]/;
|
|
1177 $hash_mirs{$nucleus} .="$id\t";
|
|
1178 $hash_nuclei{$nucleus} += 1;
|
|
1179 close FASTA;
|
|
1180 }
|
|
1181
|
|
1182
|
|
1183 sub parse_file_struct{
|
|
1184 #parses the output from RNAfoldand reads it into hashes
|
|
1185 my($file) = @_;
|
|
1186 my($id,$desc,$seq,$struct,$mfe) = ();
|
|
1187 open (FILE_STRUCT, "<$file") or die "can not open $file\n";
|
|
1188 while (<FILE_STRUCT>){
|
|
1189 chomp;
|
|
1190 if (/^>(\S+)\s*(.*)/){
|
|
1191 $id= $1;
|
|
1192 $desc= $2;
|
|
1193 $seq= "";
|
|
1194 $struct= "";
|
|
1195 $mfe= "";
|
|
1196 while (<FILE_STRUCT>){
|
|
1197 chomp;
|
|
1198 if (/^>(\S+)\s*(.*)/){
|
|
1199 $hash_desc{$id} = $desc;
|
|
1200 $hash_seq{$id} = $seq;
|
|
1201 $hash_struct{$id} = $struct;
|
|
1202 $hash_mfe{$id} = $mfe;
|
|
1203 $id = $1;
|
|
1204 $desc = $2;
|
|
1205 $seq = "";
|
|
1206 $struct = "";
|
|
1207 $mfe = "";
|
|
1208 next;
|
|
1209 }
|
|
1210 if(/^\w/){
|
|
1211 tr/uU/tT/;
|
|
1212 $seq .= $_;
|
|
1213 next;
|
|
1214 }
|
|
1215 if(/((\.|\(|\))+)/){$struct .=$1;}
|
|
1216 if(/\((\s*-\d+\.\d+)\)/){$mfe = $1;}
|
|
1217 }
|
|
1218 }
|
|
1219 }
|
|
1220 $hash_desc{$id} = $desc;
|
|
1221 $hash_seq{$id} = $seq;
|
|
1222 $hash_struct{$id} = $struct;
|
|
1223 $hash_mfe{$id} = $mfe;
|
|
1224 close FILE_STRUCT;
|
|
1225 return;
|
|
1226 }
|
|
1227
|
|
1228
|
|
1229 sub score_s{
|
|
1230
|
|
1231 #this score message is appended to the end of the string of score messages outputted for the potential precursor
|
|
1232
|
|
1233 my $message=shift;
|
|
1234 $message_score.=$message."\n";;
|
|
1235 return;
|
|
1236 }
|
|
1237
|
|
1238
|
|
1239
|
|
1240 sub score_p{
|
|
1241
|
|
1242 #this score message is appended to the beginning of the string of score messages outputted for the potential precursor
|
|
1243
|
|
1244 my $message=shift;
|
|
1245 $message_score=$message."\n".$message_score;
|
|
1246 return;
|
|
1247 }
|
|
1248
|
|
1249
|
|
1250
|
|
1251 sub filter_s{
|
|
1252
|
|
1253 #this filtering message is appended to the end of the string of filtering messages outputted for the potential precursor
|
|
1254
|
|
1255 my $message=shift;
|
|
1256 $message_filter.=$message."\n";
|
|
1257 return;
|
|
1258 }
|
|
1259
|
|
1260
|
|
1261 sub filter_p{
|
|
1262
|
|
1263 #this filtering message is appended to the beginning of the string of filtering messages outputted for the potential precursor
|
|
1264
|
|
1265 my $message=shift;
|
|
1266 if(defined $message_filter){$message_filter=$message."\n".$message_filter;}
|
|
1267 else{$message_filter=$message."\n";}
|
|
1268 return;
|
|
1269 }
|
|
1270
|
|
1271
|
|
1272 sub find_freq{
|
|
1273
|
|
1274 #finds the frequency of a given read query from its id.
|
|
1275
|
|
1276 my($query)=@_;
|
|
1277
|
|
1278 if($query=~/x(\d+)/i){
|
|
1279 my $freq=$1;
|
|
1280 return $freq;
|
|
1281 }else{
|
|
1282 print STDERR "Problem with read format\n";
|
|
1283 return 0;
|
|
1284 }
|
|
1285 }
|
|
1286
|
|
1287
|
|
1288 sub print_hash_comp{
|
|
1289
|
|
1290 #prints the 'comp' hash
|
|
1291
|
|
1292 my @keys=sort keys %hash_comp;
|
|
1293 foreach my $key(@keys){
|
|
1294 my $value=$hash_comp{$key};
|
|
1295 print "$key \t$value\n";
|
|
1296 }
|
|
1297 }
|
|
1298
|
|
1299
|
|
1300
|
|
1301 sub print_hash_bp{
|
|
1302
|
|
1303 #prints the 'bp' hash
|
|
1304
|
|
1305 my @keys=sort {$a<=>$b} keys %hash_bp;
|
|
1306 foreach my $key(@keys){
|
|
1307 my $value=$hash_bp{$key};
|
|
1308 print "$key\t$value\n";
|
|
1309 }
|
|
1310 print "\n";
|
|
1311 }
|
|
1312
|
|
1313
|
|
1314
|
|
1315 sub find_strand{
|
|
1316
|
|
1317 #A subroutine to find the strand, parsing different blast formats
|
|
1318
|
|
1319 my($other)=@_;
|
|
1320
|
|
1321 my $strand="+";
|
|
1322
|
|
1323 if($other=~/-/){
|
|
1324 $strand="-";
|
|
1325 }
|
|
1326
|
|
1327 if($other=~/minus/i){
|
|
1328 $strand="-";
|
|
1329 }
|
|
1330 return($strand);
|
|
1331 }
|
|
1332
|
|
1333
|
|
1334 sub contained{
|
|
1335
|
|
1336 #Is the stretch defined by the first positions contained in the stretch defined by the second?
|
|
1337
|
|
1338 my($beg1,$end1,$beg2,$end2)=@_;
|
|
1339
|
|
1340 testbeginend($beg1,$end1,$beg2,$end2);
|
|
1341
|
|
1342 if($beg2<=$beg1 and $end1<=$end2){
|
|
1343 return 1;
|
|
1344 }else{
|
|
1345 return 0;
|
|
1346 }
|
|
1347 }
|
|
1348
|
|
1349
|
|
1350 sub testbeginend{
|
|
1351
|
|
1352 #Are the beginposition numerically smaller than the endposition for each pair?
|
|
1353
|
|
1354 my($begin1,$end1,$begin2,$end2)=@_;
|
|
1355
|
|
1356 unless($begin1<=$end1 and $begin2<=$end2){
|
|
1357 print STDERR "beg can not be larger than end for $subject_old\n";
|
|
1358 exit;
|
|
1359 }
|
|
1360 }
|
|
1361
|
|
1362
|
|
1363 sub rev_pos{
|
|
1364
|
|
1365 # The blast_parsed format always uses positions that are relative to the 5' of the given strand
|
|
1366 # This means that for a sequence of length n, the first nucleotide on the minus strand base pairs with
|
|
1367 # the n't nucleotide on the plus strand
|
|
1368
|
|
1369 # This subroutine reverses the begin and end positions of positions of the minus strand so that they
|
|
1370 # are relative to the 5' end of the plus strand
|
|
1371
|
|
1372 my($beg,$end,$lng)=@_;
|
|
1373
|
|
1374 my $new_end=$lng-$beg+1;
|
|
1375 my $new_beg=$lng-$end+1;
|
|
1376
|
|
1377 return($new_beg,$new_end);
|
|
1378 }
|
|
1379
|
|
1380 sub round {
|
|
1381
|
|
1382 #rounds to nearest integer
|
|
1383
|
|
1384 my($number) = shift;
|
|
1385 return int($number + .5);
|
|
1386
|
|
1387 }
|
|
1388
|
|
1389
|
|
1390 sub rev{
|
|
1391
|
|
1392 #reverses the order of nucleotides in a sequence
|
|
1393
|
|
1394 my($sequence)=@_;
|
|
1395
|
|
1396 my $rev=reverse $sequence;
|
|
1397
|
|
1398 return $rev;
|
|
1399 }
|
|
1400
|
|
1401 sub com{
|
|
1402
|
|
1403 #the complementary of a sequence
|
|
1404
|
|
1405 my($sequence)=@_;
|
|
1406
|
|
1407 $sequence=~tr/acgtuACGTU/TGCAATGCAA/;
|
|
1408
|
|
1409 return $sequence;
|
|
1410 }
|
|
1411
|
|
1412 sub revcom{
|
|
1413
|
|
1414 #reverse complement
|
|
1415
|
|
1416 my($sequence)=@_;
|
|
1417
|
|
1418 my $revcom=rev(com($sequence));
|
|
1419
|
|
1420 return $revcom;
|
|
1421 }
|
|
1422
|
|
1423
|
|
1424 sub max2 {
|
|
1425
|
|
1426 #max of two numbers
|
|
1427
|
|
1428 my($a, $b) = @_;
|
|
1429 return ($a>$b ? $a : $b);
|
|
1430 }
|
|
1431
|
|
1432 sub min2 {
|
|
1433
|
|
1434 #min of two numbers
|
|
1435
|
|
1436 my($a, $b) = @_;
|
|
1437 return ($a<$b ? $a : $b);
|
|
1438 }
|
|
1439
|
|
1440
|
|
1441
|
|
1442 sub score_freq{
|
|
1443
|
|
1444 # scores the count of reads that map to the potential precursor
|
|
1445 # Assumes geometric distribution as described in methods section of manuscript
|
|
1446
|
|
1447 my $freq=shift;
|
|
1448
|
|
1449 #parameters of known precursors and background hairpins
|
|
1450 my $parameter_test=0.999;
|
|
1451 my $parameter_control=0.6;
|
|
1452
|
|
1453 #log_odds calculated directly to avoid underflow
|
|
1454 my $intercept=log((1-$parameter_test)/(1-$parameter_control));
|
|
1455 my $slope=log($parameter_test/$parameter_control);
|
|
1456 my $log_odds=$slope*$freq+$intercept;
|
|
1457
|
|
1458 #if no strong evidence for 3' overhangs, limit the score contribution to 0
|
|
1459 unless($options{x} or $hash_comp{"star_read"}){$log_odds=min2($log_odds,0);}
|
|
1460
|
|
1461 return $log_odds;
|
|
1462 }
|
|
1463
|
|
1464
|
|
1465
|
|
1466 ##sub score_mfe{
|
|
1467
|
|
1468 # scores the minimum free energy in kCal/mol of the potential precursor
|
|
1469 # Assumes Gumbel distribution as described in methods section of manuscript
|
|
1470
|
|
1471 ## my $mfe=shift;
|
|
1472
|
|
1473 #numerical value, minimum 1
|
|
1474 ## my $mfe_adj=max2(1,-$mfe);
|
|
1475
|
|
1476 #parameters of known precursors and background hairpins, scale and location
|
|
1477 ## my $prob_test=prob_gumbel_discretized($mfe_adj,5.5,32);
|
|
1478 ## my $prob_background=prob_gumbel_discretized($mfe_adj,4.8,23);
|
|
1479
|
|
1480 ## my $odds=$prob_test/$prob_background;
|
|
1481 ## my $log_odds=log($odds);
|
|
1482
|
|
1483 ## return $log_odds;
|
|
1484 ##}
|
|
1485
|
|
1486 sub score_mfe{
|
|
1487 # use bignum;
|
|
1488
|
|
1489 # scores the minimum free energy in kCal/mol of the potential precursor
|
|
1490 # Assumes Gumbel distribution as described in methods section of manuscript
|
|
1491
|
|
1492 my ($mfe,$mlng)=@_;
|
|
1493
|
|
1494 #numerical value, minimum 1
|
|
1495 my $mfe_adj=max2(1,-$mfe);
|
|
1496 my $mfe_adj1=$mfe/$mlng;
|
|
1497 #parameters of known precursors and background hairpins, scale and location
|
|
1498 my $a=1.339e-12;my $b=2.778e-13;my $c=45.834;
|
|
1499 my $ev=$e**($mfe_adj1*$c);
|
|
1500 print STDERR "\n***",$ev,"**\t",$ev+$b,"\t";
|
|
1501 my $log_odds=($a/($b+$ev));
|
|
1502
|
|
1503
|
|
1504 my $prob_test=prob_gumbel_discretized($mfe_adj,5.5,32);
|
|
1505 my $prob_background=prob_gumbel_discretized($mfe_adj,4.8,23);
|
|
1506
|
|
1507 my $odds=$prob_test/$prob_background;
|
|
1508 my $log_odds_2=log($odds);
|
|
1509 print STDERR "log_odds :",$log_odds,"\t",$log_odds_2,"\n";
|
|
1510 return $log_odds;
|
|
1511 }
|
|
1512
|
|
1513
|
|
1514
|
|
1515 sub prob_gumbel_discretized{
|
|
1516
|
|
1517 # discretized Gumbel distribution, probabilities within windows of 1 kCal/mol
|
|
1518 # uses the subroutine that calculates the cdf to find the probabilities
|
|
1519
|
|
1520 my ($var,$scale,$location)=@_;
|
|
1521
|
|
1522 my $bound_lower=$var-0.5;
|
|
1523 my $bound_upper=$var+0.5;
|
|
1524
|
|
1525 my $cdf_lower=cdf_gumbel($bound_lower,$scale,$location);
|
|
1526 my $cdf_upper=cdf_gumbel($bound_upper,$scale,$location);
|
|
1527
|
|
1528 my $prob=$cdf_upper-$cdf_lower;
|
|
1529
|
|
1530 return $prob;
|
|
1531 }
|
|
1532
|
|
1533
|
|
1534 sub cdf_gumbel{
|
|
1535
|
|
1536 # calculates the cumulative distribution function of the Gumbel distribution
|
|
1537
|
|
1538 my ($var,$scale,$location)=@_;
|
|
1539
|
|
1540 my $cdf=$e**(-($e**(-($var-$location)/$scale)));
|
|
1541
|
|
1542 return $cdf;
|
|
1543 }
|
|
1544
|