Mercurial > repos > big-tiandm > mirplant2
comparison miRDeep_plant.pl @ 32:b3f9565b30b4 draft
Uploaded
author | big-tiandm |
---|---|
date | Thu, 31 Jul 2014 03:07:30 -0400 |
parents | dc5a29826c7d |
children | 0c4e11018934 |
comparison
equal
deleted
inserted
replaced
31:7321a6f82492 | 32:b3f9565b30b4 |
---|---|
1 #!/usr/bin/perl | |
2 | |
3 use warnings; | |
4 use strict; | |
5 use Getopt::Std; | |
6 | |
7 | |
8 | |
9 ################################# MIRDEEP ################################################# | |
10 | |
11 ################################## USAGE ################################################## | |
12 | |
13 | |
14 my $usage= | |
15 "$0 file_signature file_structure temp_out_directory | |
16 | |
17 This is the core algorithm of miRDeep. It takes as input a file in blastparsed format with | |
18 information on the positions of reads aligned to potential precursor sequences (signature). | |
19 It also takes as input an RNAfold output file, giving information on the sequence, structure | |
20 and mimimum free energy of the potential precursor sequences. | |
21 | |
22 Extra arguments can be given. -s specifies a fastafile containing the known mature miRNA | |
23 sequences that should be considered for conservation purposes. -t prints out the potential | |
24 precursor sequences that do _not_ exceed the cut-off (default prints out the sequences that | |
25 exceeds the cut-off). -u gives limited output, that is only the ids of the potential precursors | |
26 that exceed the cut-off. -v varies the cut-off. -x is a sensitive option for Sanger sequences | |
27 obtained through conventional cloning. -z consider the number of base pairings in the lower | |
28 stems (this option is not well tested). | |
29 | |
30 -h print this usage | |
31 -s fasta file with known miRNAs | |
32 #-o temp directory ,maked befor running the program. | |
33 -t print filtered | |
34 -u limited output (only ids) | |
35 -v cut-off (default 1) | |
36 -x sensitive option for Sanger sequences | |
37 -y use Randfold | |
38 -z consider Drosha processing | |
39 "; | |
40 | |
41 | |
42 | |
43 | |
44 | |
45 ############################################################################################ | |
46 | |
47 ################################### INPUT ################################################## | |
48 | |
49 | |
50 #signature file in blast_parsed format | |
51 my $file_blast_parsed=shift or die $usage; | |
52 | |
53 #structure file outputted from RNAfold | |
54 my $file_struct=shift or die $usage; | |
55 | |
56 my $tmpdir=shift or die $usage; | |
57 #options | |
58 my %options=(); | |
59 getopts("hs:tuv:xyz",\%options); | |
60 | |
61 | |
62 | |
63 | |
64 | |
65 | |
66 ############################################################################################# | |
67 | |
68 ############################# GLOBAL VARIABLES ############################################## | |
69 | |
70 | |
71 #parameters | |
72 my $nucleus_lng=11; | |
73 | |
74 my $score_star=3.9; | |
75 my $score_star_not=-1.3; | |
76 my $score_nucleus=7.63; | |
77 my $score_nucleus_not=-1.17; | |
78 my $score_randfold=1.37; | |
79 my $score_randfold_not=-3.624; | |
80 my $score_intercept=0.3; | |
81 my @scores_stem=(-3.1,-2.3,-2.2,-1.6,-1.5,0.1,0.6,0.8,0.9,0.9,0); | |
82 my $score_min=1; | |
83 if($options{v}){$score_min=$options{v};} | |
84 if($options{x}){$score_min=-5;} | |
85 | |
86 my $e=2.718281828; | |
87 | |
88 #hashes | |
89 my %hash_desc; | |
90 my %hash_seq; | |
91 my %hash_struct; | |
92 my %hash_mfe; | |
93 my %hash_nuclei; | |
94 my %hash_mirs; | |
95 my %hash_query; | |
96 my %hash_comp; | |
97 my %hash_bp; | |
98 | |
99 #other variables | |
100 my $subject_old; | |
101 my $message_filter; | |
102 my $message_score; | |
103 my $lines; | |
104 my $out_of_bound; | |
105 | |
106 | |
107 | |
108 ############################################################################################## | |
109 | |
110 ################################ MAIN ###################################################### | |
111 | |
112 | |
113 #print help if that option is used | |
114 if($options{h}){die $usage;} | |
115 unless ($tmpdir=~/\/$/) {$tmpdir .="/";} | |
116 if(!(-s $tmpdir)){mkdir $tmpdir;} | |
117 $tmpdir .="TMP_DIR/"; | |
118 mkdir $tmpdir; | |
119 | |
120 #parse structure file outputted from RNAfold | |
121 parse_file_struct($file_struct); | |
122 | |
123 #if conservation is scored, the fasta file of known miRNA sequences is parsed | |
124 if($options{s}){create_hash_nuclei($options{s})}; | |
125 | |
126 #parse signature file in blast_parsed format and resolve each potential precursor | |
127 parse_file_blast_parsed($file_blast_parsed); | |
128 `rm -rf $tmpdir`; | |
129 exit; | |
130 | |
131 | |
132 | |
133 | |
134 ############################################################################################## | |
135 | |
136 ############################## SUBROUTINES ################################################### | |
137 | |
138 | |
139 | |
140 sub parse_file_blast_parsed{ | |
141 | |
142 # read through the signature blastparsed file, fills up a hash with information on queries | |
143 # (deep sequences) mapping to the current subject (potential precursor) and resolve each | |
144 # potential precursor in turn | |
145 | |
146 my $file_blast_parsed=shift; | |
147 | |
148 open (FILE_BLAST_PARSED, "<$file_blast_parsed") or die "can not open $file_blast_parsed\n"; | |
149 while (my $line=<FILE_BLAST_PARSED>){ | |
150 if($line=~/^(\S+)\s+(\S+)\s+(\d+)\.+(\d+)\s+(\S+)\s+(\S+)\s+(\d+)\.+(\d+)\s+(\S+)\s+(\S+)\s+(\S+)\s+(.+)$/){ | |
151 my $query=$1; | |
152 my $query_lng=$2; | |
153 my $query_beg=$3; | |
154 my $query_end=$4; | |
155 my $subject=$5; | |
156 my $subject_lng=$6; | |
157 my $subject_beg=$7; | |
158 my $subject_end=$8; | |
159 my $e_value=$9; | |
160 my $pid=$10; | |
161 my $bitscore=$11; | |
162 my $other=$12; | |
163 | |
164 #if the new line concerns a new subject (potential precursor) then the old subject must be resolved | |
165 if($subject_old and $subject_old ne $subject){ | |
166 resolve_potential_precursor(); | |
167 } | |
168 | |
169 #resolve the strand | |
170 my $strand=find_strand($other); | |
171 | |
172 #resolve the number of reads that the deep sequence represents | |
173 my $freq=find_freq($query); | |
174 | |
175 #read information of the query (deep sequence) into hash | |
176 $hash_query{$query}{"subject_beg"}=$subject_beg; | |
177 $hash_query{$query}{"subject_end"}=$subject_end; | |
178 $hash_query{$query}{"strand"}=$strand; | |
179 $hash_query{$query}{"freq"}=$freq; | |
180 | |
181 #save the signature information | |
182 $lines.=$line; | |
183 | |
184 $subject_old=$subject; | |
185 } | |
186 } | |
187 resolve_potential_precursor(); | |
188 } | |
189 | |
190 sub resolve_potential_precursor{ | |
191 | |
192 # dissects the potential precursor in parts by filling hashes, and tests if it passes the | |
193 # initial filter and the scoring filter | |
194 | |
195 # binary variable whether the potential precursor is still viable | |
196 my $ret=1; | |
197 #print STDERR ">$subject_old\n"; | |
198 | |
199 fill_structure(); | |
200 #print STDERR "\%hash_bp",scalar keys %hash_bp,"\n"; | |
201 fill_pri(); | |
202 #print STDERR "\%hash_comp",scalar keys %hash_comp,"\n"; | |
203 | |
204 fill_mature(); | |
205 #print STDERR "\%hash_comp",scalar keys %hash_comp,"\n"; | |
206 | |
207 fill_star(); | |
208 #print STDERR "\%hash_comp",scalar keys %hash_comp,"\n"; | |
209 | |
210 fill_loop(); | |
211 #print STDERR "\%hash_comp",scalar keys %hash_comp,"\n"; | |
212 | |
213 fill_lower_flanks(); | |
214 #print STDERR "\%hash_comp",scalar keys %hash_comp,"\n"; | |
215 | |
216 # do_test_assemble(); | |
217 | |
218 # this is the actual classification | |
219 unless(pass_filtering_initial() and pass_threshold_score()){$ret=0;} | |
220 | |
221 print_results($ret); | |
222 | |
223 reset_variables(); | |
224 | |
225 return; | |
226 | |
227 } | |
228 | |
229 | |
230 | |
231 sub print_results{ | |
232 | |
233 my $ret=shift; | |
234 | |
235 # print out if the precursor is accepted and accepted precursors should be printed out | |
236 # or if the potential precursor is discarded and discarded potential precursors should | |
237 # be printed out | |
238 | |
239 if((!$options{t} and $ret) or ($options{t} and !$ret)){ | |
240 #full output | |
241 unless($options{u}){ | |
242 if($message_filter){print $message_filter;} | |
243 if($message_score){print $message_score;} | |
244 print_hash_comp(); | |
245 print $lines,"\n\n"; | |
246 return; | |
247 } | |
248 #limited output (only ids) | |
249 my $id=$hash_comp{"pri_id"}; | |
250 print "$id\n"; | |
251 } | |
252 } | |
253 | |
254 | |
255 | |
256 | |
257 | |
258 | |
259 | |
260 sub pass_threshold_score{ | |
261 | |
262 # this is the scoring | |
263 | |
264 #minimum free energy of the potential precursor | |
265 # my $score_mfe=score_mfe($hash_comp{"pri_mfe"}); | |
266 my $score_mfe=score_mfe($hash_comp{"pri_mfe"},$hash_comp{"pri_end"}); | |
267 | |
268 #count of reads that map in accordance with Dicer processing | |
269 my $score_freq=score_freq($hash_comp{"freq"}); | |
270 #print STDERR "score_mfe: $score_mfe\nscore_freq: $score_freq\n"; | |
271 | |
272 #basic score | |
273 my $score=$score_mfe+$score_freq; | |
274 | |
275 #scoring of conserved nucleus/seed (optional) | |
276 if($options{s}){ | |
277 | |
278 #if the nucleus is conserved | |
279 if(test_nucleus_conservation()){ | |
280 | |
281 #nucleus from position 2-8 | |
282 my $nucleus=substr($hash_comp{"mature_seq"},1,$nucleus_lng); | |
283 | |
284 #resolve DNA/RNA ambiguities | |
285 $nucleus=~tr/[T]/[U]/; | |
286 | |
287 #print score contribution | |
288 score_s("score_nucleus\t$score_nucleus"); | |
289 | |
290 #print the ids of known miRNAs with same nucleus | |
291 score_s("$hash_mirs{$nucleus}"); | |
292 #print STDERR "score_nucleus\t$score_nucleus\n"; | |
293 | |
294 #add to score | |
295 $score+=$score_nucleus; | |
296 | |
297 #if the nucleus is not conserved | |
298 }else{ | |
299 #print (negative) score contribution | |
300 score_s("score_nucleus\t$score_nucleus_not"); | |
301 | |
302 #add (negative) score contribution | |
303 $score+=$score_nucleus_not; | |
304 } | |
305 } | |
306 | |
307 #if the majority of potential star reads fall as expected from Dicer processing | |
308 if($hash_comp{"star_read"}){ | |
309 score_s("score_star\t$score_star"); | |
310 #print STDERR "score_star\t$score_star\n"; | |
311 $score+=$score_star; | |
312 }else{ | |
313 score_s("score_star\t$score_star_not"); | |
314 #print STDERR "score_star_not\t$score_star_not\n"; | |
315 $score+=$score_star_not; | |
316 } | |
317 | |
318 #score lower stems for potential for Drosha recognition (highly optional) | |
319 if($options{z}){ | |
320 my $stem_bp=$hash_comp{"stem_bp"}; | |
321 my $score_stem=$scores_stem[$stem_bp]; | |
322 $score+=$score_stem; | |
323 score_s("score_stem\t$score_stem"); | |
324 } | |
325 | |
326 #print STDERR "score_intercept\t$score_intercept\n"; | |
327 | |
328 $score+=$score_intercept; | |
329 | |
330 #score for randfold (optional) | |
331 if($options{y}){ | |
332 | |
333 # only calculate randfold value if it can make the difference between the potential precursor | |
334 # being accepted or discarded | |
335 if($score+$score_randfold>=$score_min and $score+$score_randfold_not<=$score_min){ | |
336 | |
337 #randfold value<0.05 | |
338 if(test_randfold()){$score+=$score_randfold;score_s("score_randfold\t$score_randfold");} | |
339 | |
340 #randfold value>0.05 | |
341 else{$score+=$score_randfold_not;score_s("score_randfold\t$score_randfold_not");} | |
342 } | |
343 } | |
344 | |
345 #round off values to one decimal | |
346 my $round_mfe=round($score_mfe*10)/10; | |
347 my $round_freq=round($score_freq*10)/10; | |
348 my $round=round($score*10)/10; | |
349 | |
350 #print scores | |
351 score_s("score_mfe\t$round_mfe\nscore_freq\t$round_freq\nscore\t$round"); | |
352 | |
353 #return 1 if the potential precursor is accepted, return 0 if discarded | |
354 unless($score>=$score_min){return 0;} | |
355 return 1; | |
356 } | |
357 | |
358 sub test_randfold{ | |
359 | |
360 #print sequence to temporary file, test randfold value, return 1 or 0 | |
361 | |
362 # print_file("pri_seq.fa",">pri_seq\n".$hash_comp{"pri_seq"}); | |
363 my $tmpfile=$tmpdir.$hash_comp{"pri_id"}; | |
364 open(FILE, ">$tmpfile"); | |
365 print FILE ">pri_seq\n",$hash_comp{"pri_seq"}; | |
366 close FILE; | |
367 | |
368 # my $p_value=`randfold -s $tmpfile 999 | cut -f 3`; | |
369 my $p1=`randfold -s $tmpfile 999 | cut -f 3`; | |
370 my $p2=`randfold -s $tmpfile 999 | cut -f 3`; | |
371 my $p_value=($p1+$p2)/2; | |
372 wait; | |
373 # system "rm $tmpfile"; | |
374 | |
375 if($p_value<=0.05){return 1;} | |
376 | |
377 return 0; | |
378 } | |
379 | |
380 | |
381 #sub print_file{ | |
382 | |
383 #print string to file | |
384 | |
385 # my($file,$string)=@_; | |
386 | |
387 # open(FILE, ">$file"); | |
388 # print FILE "$string"; | |
389 # close FILE; | |
390 #} | |
391 | |
392 | |
393 sub test_nucleus_conservation{ | |
394 | |
395 #test if nucleus is identical to nucleus from known miRNA, return 1 or 0 | |
396 | |
397 my $nucleus=substr($hash_comp{"mature_seq"},1,$nucleus_lng); | |
398 $nucleus=~tr/[T]/[U]/; | |
399 if($hash_nuclei{$nucleus}){return 1;} | |
400 | |
401 return 0; | |
402 } | |
403 | |
404 | |
405 | |
406 sub pass_filtering_initial{ | |
407 | |
408 #test if the structure forms a plausible hairpin | |
409 unless(pass_filtering_structure()){filter_p("structure problem"); return 0;} | |
410 | |
411 #test if >90% of reads map to the hairpin in consistence with Dicer processing | |
412 unless(pass_filtering_signature()){filter_p("signature problem");return 0;} | |
413 | |
414 return 1; | |
415 | |
416 } | |
417 | |
418 | |
419 sub pass_filtering_signature{ | |
420 | |
421 #number of reads that map in consistence with Dicer processing | |
422 my $consistent=0; | |
423 | |
424 #number of reads that map inconsistent with Dicer processing | |
425 my $inconsistent=0; | |
426 | |
427 # number of potential star reads map in good consistence with Drosha/Dicer processing | |
428 # (3' overhangs relative to mature product) | |
429 my $star_perfect=0; | |
430 | |
431 # number of potential star reads that do not map in good consistence with 3' overhang | |
432 my $star_fuzzy=0; | |
433 | |
434 | |
435 #sort queries (deep sequences) by their position on the hairpin | |
436 my @queries=sort {$hash_query{$a}{"subject_beg"} <=> $hash_query{$b}{"subject_beg"}} keys %hash_query; | |
437 | |
438 foreach my $query(@queries){ | |
439 | |
440 #number of reads that the deep sequence represents | |
441 unless(defined($hash_query{$query}{"freq"})){next;} | |
442 my $query_freq=$hash_query{$query}{"freq"}; | |
443 | |
444 #test which Dicer product (if any) the deep sequence corresponds to | |
445 my $product=test_query($query); | |
446 | |
447 #if the deep sequence corresponds to a Dicer product, add to the 'consistent' variable | |
448 if($product){$consistent+=$query_freq;} | |
449 | |
450 #if the deep sequence do not correspond to a Dicer product, add to the 'inconsistent' variable | |
451 else{$inconsistent+=$query_freq;} | |
452 | |
453 #test a potential star sequence has good 3' overhang | |
454 if($product eq "star"){ | |
455 if(test_star($query)){$star_perfect+=$query_freq;} | |
456 else{$star_fuzzy+=$query_freq;} | |
457 } | |
458 } | |
459 | |
460 # if the majority of potential star sequences map in good accordance with 3' overhang | |
461 # score for the presence of star evidence | |
462 if($star_perfect>$star_fuzzy){$hash_comp{"star_read"}=1;} | |
463 | |
464 #total number of reads mapping to the hairpin | |
465 my $freq=$consistent+$inconsistent; | |
466 $hash_comp{"freq"}=$freq; | |
467 unless($freq>0){filter_s("read frequency too low"); return 0;} | |
468 | |
469 #unless >90% of the reads map in consistence with Dicer processing, the hairpin is discarded | |
470 my $inconsistent_fraction=$inconsistent/($inconsistent+$consistent); | |
471 unless($inconsistent_fraction<=0.1){filter_p("inconsistent\t$inconsistent\nconsistent\t$consistent"); return 0;} | |
472 | |
473 #the hairpin is retained | |
474 return 1; | |
475 } | |
476 | |
477 sub test_star{ | |
478 | |
479 #test if a deep sequence maps in good consistence with 3' overhang | |
480 | |
481 my $query=shift; | |
482 | |
483 #5' begin and 3' end positions | |
484 my $beg=$hash_query{$query}{"subject_beg"}; | |
485 my $end=$hash_query{$query}{"subject_end"}; | |
486 | |
487 #the difference between observed and expected begin positions must be 0 or 1 | |
488 my $offset=$beg-$hash_comp{"star_beg"}; | |
489 if($offset==0 or $offset==1 or $offset==-1){return 1;} | |
490 | |
491 return 0; | |
492 } | |
493 | |
494 | |
495 | |
496 sub test_query{ | |
497 | |
498 #test if deep sequence maps in consistence with Dicer processing | |
499 | |
500 my $query=shift; | |
501 | |
502 #begin, end, strand and read count | |
503 my $beg=$hash_query{$query}{"subject_beg"}; | |
504 my $end=$hash_query{$query}{"subject_end"}; | |
505 my $strand=$hash_query{$query}{"strand"}; | |
506 my $freq=$hash_query{$query}{"freq"}; | |
507 | |
508 #should not be on the minus strand (although this has in fact anecdotally been observed for known miRNAs) | |
509 if($strand eq '-'){return 0;} | |
510 | |
511 #the deep sequence is allowed to stretch 2 nt beyond the expected 5' end | |
512 my $fuzz_beg=2; | |
513 #the deep sequence is allowed to stretch 5 nt beyond the expected 3' end | |
514 my $fuzz_end=2; | |
515 | |
516 #if in accordance with Dicer processing, return the type of Dicer product | |
517 if(contained($beg,$end,$hash_comp{"mature_beg"}-$fuzz_beg,$hash_comp{"mature_end"}+$fuzz_end)){return "mature";} | |
518 if(contained($beg,$end,$hash_comp{"star_beg"}-$fuzz_beg,$hash_comp{"star_end"}+$fuzz_end)){return "star";} | |
519 if(contained($beg,$end,$hash_comp{"loop_beg"}-$fuzz_beg,$hash_comp{"loop_end"}+$fuzz_end)){return "loop";} | |
520 | |
521 #if not in accordance, return 0 | |
522 return 0; | |
523 } | |
524 | |
525 | |
526 sub pass_filtering_structure{ | |
527 | |
528 #The potential precursor must form a hairpin with miRNA precursor-like characteristics | |
529 | |
530 #return value | |
531 my $ret=1; | |
532 | |
533 #potential mature, star, loop and lower flank parts must be identifiable | |
534 unless(test_components()){return 0;} | |
535 | |
536 #no bifurcations | |
537 unless(no_bifurcations_precursor()){$ret=0;} | |
538 | |
539 #minimum 14 base pairings in duplex | |
540 unless(bp_duplex()>=15){$ret=0;filter_s("too few pairings in duplex");} | |
541 | |
542 #not more than 6 nt difference between mature and star length | |
543 unless(-6<diff_lng() and diff_lng()<6){$ret=0; filter_s("too big difference between mature and star length") } | |
544 | |
545 return $ret; | |
546 } | |
547 | |
548 | |
549 | |
550 | |
551 | |
552 | |
553 sub test_components{ | |
554 | |
555 #tests whether potential mature, star, loop and lower flank parts are identifiable | |
556 | |
557 unless($hash_comp{"mature_struct"}){ | |
558 filter_s("no mature"); | |
559 # print STDERR "no mature\n"; | |
560 return 0; | |
561 } | |
562 | |
563 unless($hash_comp{"star_struct"}){ | |
564 filter_s("no star"); | |
565 # print STDERR "no star\n"; | |
566 return 0; | |
567 } | |
568 | |
569 unless($hash_comp{"loop_struct"}){ | |
570 filter_s("no loop"); | |
571 # print STDERR "no loop\n"; | |
572 return 0; | |
573 } | |
574 | |
575 unless($hash_comp{"flank_first_struct"}){ | |
576 filter_s("no flanks"); | |
577 #print STDERR "no flanks_first_struct\n"; | |
578 return 0; | |
579 } | |
580 | |
581 unless($hash_comp{"flank_second_struct"}){ | |
582 filter_s("no flanks"); | |
583 # print STDERR "no flanks_second_struct\n"; | |
584 return 0; | |
585 } | |
586 return 1; | |
587 } | |
588 | |
589 | |
590 | |
591 | |
592 | |
593 sub no_bifurcations_precursor{ | |
594 | |
595 #tests whether there are bifurcations in the hairpin | |
596 | |
597 #assembles the potential precursor sequence and structure from the expected Dicer products | |
598 #this is the expected biological precursor, in contrast with 'pri_seq' that includes | |
599 #some genomic flanks on both sides | |
600 | |
601 my $pre_struct; | |
602 my $pre_seq; | |
603 if($hash_comp{"mature_arm"} eq "first"){ | |
604 $pre_struct.=$hash_comp{"mature_struct"}.$hash_comp{"loop_struct"}.$hash_comp{"star_struct"}; | |
605 $pre_seq.=$hash_comp{"mature_seq"}.$hash_comp{"loop_seq"}.$hash_comp{"star_seq"}; | |
606 }else{ | |
607 $pre_struct.=$hash_comp{"star_struct"}.$hash_comp{"loop_struct"}.$hash_comp{"mature_struct"}; | |
608 $pre_seq.=$hash_comp{"star_seq"}.$hash_comp{"loop_seq"}.$hash_comp{"mature_seq"}; | |
609 } | |
610 | |
611 #read into hash | |
612 $hash_comp{"pre_struct"}=$pre_struct; | |
613 $hash_comp{"pre_seq"}=$pre_seq; | |
614 | |
615 #simple pattern matching checks for bifurcations | |
616 unless($pre_struct=~/^((\.|\()+..(\.|\))+)$/){ | |
617 filter_s("bifurcation in precursor"); | |
618 # print STDERR "bifurcation in precursor\n"; | |
619 return 0; | |
620 } | |
621 | |
622 return 1; | |
623 } | |
624 | |
625 sub bp_precursor{ | |
626 | |
627 #total number of bps in the precursor | |
628 | |
629 my $pre_struct=$hash_comp{"pre_struct"}; | |
630 | |
631 #simple pattern matching | |
632 my $pre_bps=0; | |
633 while($pre_struct=~/\(/g){ | |
634 $pre_bps++; | |
635 } | |
636 return $pre_bps; | |
637 } | |
638 | |
639 | |
640 sub bp_duplex{ | |
641 | |
642 #total number of bps in the duplex | |
643 | |
644 my $duplex_bps=0; | |
645 my $mature_struct=$hash_comp{"mature_struct"}; | |
646 | |
647 #simple pattern matching | |
648 while($mature_struct=~/(\(|\))/g){ | |
649 $duplex_bps++; | |
650 } | |
651 return $duplex_bps; | |
652 } | |
653 | |
654 sub diff_lng{ | |
655 | |
656 #find difference between mature and star lengths | |
657 | |
658 my $mature_lng=length $hash_comp{"mature_struct"}; | |
659 my $star_lng=length $hash_comp{"star_struct"}; | |
660 my $diff_lng=$mature_lng-$star_lng; | |
661 return $diff_lng; | |
662 } | |
663 | |
664 | |
665 | |
666 sub do_test_assemble{ | |
667 | |
668 # not currently used, tests if the 'pri_struct' as assembled from the parts (Dicer products, lower flanks) | |
669 # is identical to 'pri_struct' before disassembly into parts | |
670 | |
671 my $assemble_struct; | |
672 | |
673 if($hash_comp{"flank_first_struct"} and $hash_comp{"mature_struct"} and $hash_comp{"loop_struct"} and $hash_comp{"star_struct"} and $hash_comp{"flank_second_struct"}){ | |
674 if($hash_comp{"mature_arm"} eq "first"){ | |
675 $assemble_struct.=$hash_comp{"flank_first_struct"}.$hash_comp{"mature_struct"}.$hash_comp{"loop_struct"}.$hash_comp{"star_struct"}.$hash_comp{"flank_second_struct"}; | |
676 }else{ | |
677 $assemble_struct.=$hash_comp{"flank_first_struct"}.$hash_comp{"star_struct"}.$hash_comp{"loop_struct"}.$hash_comp{"mature_struct"}.$hash_comp{"flank_second_struct"}; | |
678 } | |
679 unless($assemble_struct eq $hash_comp{"pri_struct"}){ | |
680 $hash_comp{"test_assemble"}=$assemble_struct; | |
681 print_hash_comp(); | |
682 } | |
683 } | |
684 return; | |
685 } | |
686 | |
687 | |
688 | |
689 sub fill_structure{ | |
690 | |
691 #reads the dot bracket structure into the 'bp' hash where each key and value are basepaired | |
692 | |
693 my $struct=$hash_struct{$subject_old}; | |
694 my $lng=length $struct; | |
695 | |
696 #local stack for keeping track of basepairings | |
697 my @bps; | |
698 | |
699 for(my $pos=1;$pos<=$lng;$pos++){ | |
700 my $struct_pos=excise_struct($struct,$pos,$pos,"+"); | |
701 | |
702 if($struct_pos eq "("){ | |
703 push(@bps,$pos); | |
704 } | |
705 | |
706 if($struct_pos eq ")"){ | |
707 my $pos_prev=pop(@bps); | |
708 $hash_bp{$pos_prev}=$pos; | |
709 $hash_bp{$pos}=$pos_prev; | |
710 } | |
711 } | |
712 return; | |
713 } | |
714 | |
715 | |
716 | |
717 sub fill_star{ | |
718 | |
719 #fills specifics on the expected star strand into 'comp' hash ('component' hash) | |
720 | |
721 #if the mature sequence is not plausible, don't look for the star arm | |
722 my $mature_arm=$hash_comp{"mature_arm"}; | |
723 unless($mature_arm){$hash_comp{"star_arm"}=0; return;} | |
724 | |
725 #if the star sequence is not plausible, don't fill into the hash | |
726 my($star_beg,$star_end)=find_star(); | |
727 my $star_arm=arm_star($star_beg,$star_end); | |
728 unless($star_arm){return;} | |
729 | |
730 #excise expected star sequence and structure | |
731 my $star_seq=excise_seq($hash_comp{"pri_seq"},$star_beg,$star_end,"+"); | |
732 my $star_struct=excise_seq($hash_comp{"pri_struct"},$star_beg,$star_end,"+"); | |
733 | |
734 #fill into hash | |
735 $hash_comp{"star_beg"}=$star_beg; | |
736 $hash_comp{"star_end"}=$star_end; | |
737 $hash_comp{"star_seq"}=$star_seq; | |
738 $hash_comp{"star_struct"}=$star_struct; | |
739 $hash_comp{"star_arm"}=$star_arm; | |
740 | |
741 return; | |
742 } | |
743 | |
744 | |
745 sub find_star{ | |
746 | |
747 #uses the 'bp' hash to find the expected star begin and end positions from the mature positions | |
748 | |
749 #the -2 is for the overhang | |
750 my $mature_beg=$hash_comp{"mature_beg"}; | |
751 my $mature_end=$hash_comp{"mature_end"}-2; | |
752 my $mature_lng=$mature_end-$mature_beg+1; | |
753 | |
754 #in some cases, the last nucleotide of the mature sequence does not form a base pair, | |
755 #and therefore does not basepair with the first nucleotide of the star sequence. | |
756 #In this case, the algorithm searches for the last nucleotide of the mature sequence | |
757 #to form a base pair. The offset is the number of nucleotides searched through. | |
758 my $offset_star_beg=0; | |
759 my $offset_beg=0; | |
760 | |
761 #the offset should not be longer than the length of the mature sequence, then it | |
762 #means that the mature sequence does not form any base pairs | |
763 while(!$offset_star_beg and $offset_beg<$mature_lng){ | |
764 if($hash_bp{$mature_end-$offset_beg}){ | |
765 $offset_star_beg=$hash_bp{$mature_end-$offset_beg}; | |
766 }else{ | |
767 $offset_beg++; | |
768 } | |
769 } | |
770 #when defining the beginning of the star sequence, compensate for the offset | |
771 my $star_beg=$offset_star_beg-$offset_beg; | |
772 | |
773 #same as above | |
774 my $offset_star_end=0; | |
775 my $offset_end=0; | |
776 while(!$offset_star_end and $offset_end<$mature_lng){ | |
777 if($hash_bp{$mature_beg+$offset_end}){ | |
778 $offset_star_end=$hash_bp{$mature_beg+$offset_end}; | |
779 }else{ | |
780 $offset_end++; | |
781 } | |
782 } | |
783 #the +2 is for the overhang | |
784 my $star_end=$offset_star_end+$offset_end+2; | |
785 | |
786 return($star_beg,$star_end); | |
787 } | |
788 | |
789 | |
790 sub fill_pri{ | |
791 | |
792 #fills basic specifics on the precursor into the 'comp' hash | |
793 | |
794 my $seq=$hash_seq{$subject_old}; | |
795 my $struct=$hash_struct{$subject_old}; | |
796 my $mfe=$hash_mfe{$subject_old}; | |
797 my $length=length $seq; | |
798 | |
799 $hash_comp{"pri_id"}=$subject_old; | |
800 $hash_comp{"pri_seq"}=$seq; | |
801 $hash_comp{"pri_struct"}=$struct; | |
802 $hash_comp{"pri_mfe"}=$mfe; | |
803 $hash_comp{"pri_beg"}=1; | |
804 $hash_comp{"pri_end"}=$length; | |
805 | |
806 return; | |
807 } | |
808 | |
809 | |
810 sub fill_mature{ | |
811 | |
812 #fills specifics on the mature sequence into the 'comp' hash | |
813 | |
814 my $mature_query=find_mature_query(); | |
815 my($mature_beg,$mature_end)=find_positions_query($mature_query); | |
816 my $mature_strand=find_strand_query($mature_query); | |
817 my $mature_seq=excise_seq($hash_comp{"pri_seq"},$mature_beg,$mature_end,$mature_strand); | |
818 my $mature_struct=excise_struct($hash_comp{"pri_struct"},$mature_beg,$mature_end,$mature_strand); | |
819 my $mature_arm=arm_mature($mature_beg,$mature_end,$mature_strand); | |
820 | |
821 $hash_comp{"mature_query"}=$mature_query; | |
822 $hash_comp{"mature_beg"}=$mature_beg; | |
823 $hash_comp{"mature_end"}=$mature_end; | |
824 $hash_comp{"mature_strand"}=$mature_strand; | |
825 $hash_comp{"mature_struct"}=$mature_struct; | |
826 $hash_comp{"mature_seq"}=$mature_seq; | |
827 $hash_comp{"mature_arm"}=$mature_arm; | |
828 | |
829 return; | |
830 } | |
831 | |
832 | |
833 | |
834 sub fill_loop{ | |
835 | |
836 #fills specifics on the loop sequence into the 'comp' hash | |
837 | |
838 #unless both mature and star sequences are plausible, do not look for the loop | |
839 unless($hash_comp{"mature_arm"} and $hash_comp{"star_arm"}){return;} | |
840 | |
841 my $loop_beg; | |
842 my $loop_end; | |
843 | |
844 #defining the begin and end positions of the loop from the mature and star positions | |
845 #excision depends on whether the mature or star sequence is 5' of the loop ('first') | |
846 if($hash_comp{"mature_arm"} eq "first"){ | |
847 $loop_beg=$hash_comp{"mature_end"}+1; | |
848 }else{ | |
849 $loop_end=$hash_comp{"mature_beg"}-1; | |
850 } | |
851 | |
852 if($hash_comp{"star_arm"} eq "first"){ | |
853 $loop_beg=$hash_comp{"star_end"}+1; | |
854 }else{ | |
855 $loop_end=$hash_comp{"star_beg"}-1; | |
856 } | |
857 | |
858 #unless the positions are plausible, do not fill into hash | |
859 unless(test_loop($loop_beg,$loop_end)){return;} | |
860 | |
861 my $loop_seq=excise_seq($hash_comp{"pri_seq"},$loop_beg,$loop_end,"+"); | |
862 my $loop_struct=excise_struct($hash_comp{"pri_struct"},$loop_beg,$loop_end,"+"); | |
863 | |
864 $hash_comp{"loop_beg"}=$loop_beg; | |
865 $hash_comp{"loop_end"}=$loop_end; | |
866 $hash_comp{"loop_seq"}=$loop_seq; | |
867 $hash_comp{"loop_struct"}=$loop_struct; | |
868 | |
869 return; | |
870 } | |
871 | |
872 | |
873 sub fill_lower_flanks{ | |
874 | |
875 #fills specifics on the lower flanks and unpaired strands into the 'comp' hash | |
876 | |
877 #unless both mature and star sequences are plausible, do not look for the flanks | |
878 unless($hash_comp{"mature_arm"} and $hash_comp{"star_arm"}){return;} | |
879 | |
880 my $flank_first_end; | |
881 my $flank_second_beg; | |
882 | |
883 #defining the begin and end positions of the flanks from the mature and star positions | |
884 #excision depends on whether the mature or star sequence is 5' in the potenitial precursor ('first') | |
885 if($hash_comp{"mature_arm"} eq "first"){ | |
886 $flank_first_end=$hash_comp{"mature_beg"}-1; | |
887 }else{ | |
888 $flank_second_beg=$hash_comp{"mature_end"}+1; | |
889 } | |
890 | |
891 if($hash_comp{"star_arm"} eq "first"){ | |
892 $flank_first_end=$hash_comp{"star_beg"}-1; | |
893 }else{ | |
894 $flank_second_beg=$hash_comp{"star_end"}+1; | |
895 } | |
896 | |
897 #unless the positions are plausible, do not fill into hash | |
898 unless(test_flanks($flank_first_end,$flank_second_beg)){return;} | |
899 | |
900 $hash_comp{"flank_first_end"}=$flank_first_end; | |
901 $hash_comp{"flank_second_beg"}=$flank_second_beg; | |
902 $hash_comp{"flank_first_seq"}=excise_seq($hash_comp{"pri_seq"},$hash_comp{"pri_beg"},$hash_comp{"flank_first_end"},"+"); | |
903 $hash_comp{"flank_second_seq"}=excise_seq($hash_comp{"pri_seq"},$hash_comp{"flank_second_beg"},$hash_comp{"pri_end"},"+"); | |
904 $hash_comp{"flank_first_struct"}=excise_struct($hash_comp{"pri_struct"},$hash_comp{"pri_beg"},$hash_comp{"flank_first_end"},"+"); | |
905 $hash_comp{"flank_second_struct"}=excise_struct($hash_comp{"pri_struct"},$hash_comp{"flank_second_beg"},$hash_comp{"pri_end"},"+"); | |
906 | |
907 if($options{z}){ | |
908 fill_stems_drosha(); | |
909 } | |
910 | |
911 return; | |
912 } | |
913 | |
914 | |
915 sub fill_stems_drosha{ | |
916 | |
917 #scores the number of base pairings formed by the first ten nt of the lower stems | |
918 #in general, the more stems, the higher the score contribution | |
919 #warning: this options has not been thoroughly tested | |
920 | |
921 my $flank_first_struct=$hash_comp{"flank_first_struct"}; | |
922 my $flank_second_struct=$hash_comp{"flank_second_struct"}; | |
923 | |
924 my $stem_first=substr($flank_first_struct,-10); | |
925 my $stem_second=substr($flank_second_struct,0,10); | |
926 | |
927 my $stem_bp_first=0; | |
928 my $stem_bp_second=0; | |
929 | |
930 #find base pairings by simple pattern matching | |
931 while($stem_first=~/\(/g){ | |
932 $stem_bp_first++; | |
933 } | |
934 | |
935 while($stem_second=~/\)/g){ | |
936 $stem_bp_second++; | |
937 } | |
938 | |
939 my $stem_bp=min2($stem_bp_first,$stem_bp_second); | |
940 | |
941 $hash_comp{"stem_first"}=$stem_first; | |
942 $hash_comp{"stem_second"}=$stem_second; | |
943 $hash_comp{"stem_bp_first"}=$stem_bp_first; | |
944 $hash_comp{"stem_bp_second"}=$stem_bp_second; | |
945 $hash_comp{"stem_bp"}=$stem_bp; | |
946 | |
947 return; | |
948 } | |
949 | |
950 | |
951 | |
952 | |
953 sub arm_mature{ | |
954 | |
955 #tests whether the mature sequence is in the 5' ('first') or 3' ('second') arm of the potential precursor | |
956 | |
957 my ($beg,$end,$strand)=@_; | |
958 | |
959 #mature and star sequences should alway be on plus strand | |
960 if($strand eq "-"){return 0;} | |
961 | |
962 #there should be no bifurcations and minimum one base pairing | |
963 my $struct=excise_seq($hash_comp{"pri_struct"},$beg,$end,$strand); | |
964 if(defined($struct) and $struct=~/^(\(|\.)+$/ and $struct=~/\(/){ | |
965 return "first"; | |
966 }elsif(defined($struct) and $struct=~/^(\)|\.)+$/ and $struct=~/\)/){ | |
967 return "second"; | |
968 } | |
969 return 0; | |
970 } | |
971 | |
972 | |
973 sub arm_star{ | |
974 | |
975 #tests whether the star sequence is in the 5' ('first') or 3' ('second') arm of the potential precursor | |
976 | |
977 my ($beg,$end)=@_; | |
978 | |
979 #unless the begin and end positions are plausible, test negative | |
980 unless($beg>0 and $beg<=$hash_comp{"pri_end"} and $end>0 and $end<=$hash_comp{"pri_end"} and $beg<=$end){return 0;} | |
981 | |
982 #no overlap between the mature and the star sequence | |
983 if($hash_comp{"mature_arm"} eq "first"){ | |
984 ($hash_comp{"mature_end"}<$beg) or return 0; | |
985 }elsif($hash_comp{"mature_arm"} eq "second"){ | |
986 ($end<$hash_comp{"mature_beg"}) or return 0; | |
987 } | |
988 | |
989 #there should be no bifurcations and minimum one base pairing | |
990 my $struct=excise_seq($hash_comp{"pri_struct"},$beg,$end,"+"); | |
991 if($struct=~/^(\(|\.)+$/ and $struct=~/\(/){ | |
992 return "first"; | |
993 }elsif($struct=~/^(\)|\.)+$/ and $struct=~/\)/){ | |
994 return "second"; | |
995 } | |
996 return 0; | |
997 } | |
998 | |
999 | |
1000 sub test_loop{ | |
1001 | |
1002 #tests the loop positions | |
1003 | |
1004 my ($beg,$end)=@_; | |
1005 | |
1006 #unless the begin and end positions are plausible, test negative | |
1007 unless($beg>0 and $beg<=$hash_comp{"pri_end"} and $end>0 and $end<=$hash_comp{"pri_end"} and $beg<=$end){return 0;} | |
1008 | |
1009 return 1; | |
1010 } | |
1011 | |
1012 | |
1013 sub test_flanks{ | |
1014 | |
1015 #tests the positions of the lower flanks | |
1016 | |
1017 my ($beg,$end)=@_; | |
1018 | |
1019 #unless the begin and end positions are plausible, test negative | |
1020 unless($beg>0 and $beg<=$hash_comp{"pri_end"} and $end>0 and $end<=$hash_comp{"pri_end"} and $beg<=$end){return 0;} | |
1021 | |
1022 return 1; | |
1023 } | |
1024 | |
1025 | |
1026 sub comp{ | |
1027 | |
1028 #subroutine to retrive from the 'comp' hash | |
1029 | |
1030 my $type=shift; | |
1031 my $component=$hash_comp{$type}; | |
1032 return $component; | |
1033 } | |
1034 | |
1035 | |
1036 sub find_strand_query{ | |
1037 | |
1038 #subroutine to find the strand for a given query | |
1039 | |
1040 my $query=shift; | |
1041 my $strand=$hash_query{$query}{"strand"}; | |
1042 return $strand; | |
1043 } | |
1044 | |
1045 | |
1046 sub find_positions_query{ | |
1047 | |
1048 #subroutine to find the begin and end positions for a given query | |
1049 | |
1050 my $query=shift; | |
1051 my $beg=$hash_query{$query}{"subject_beg"}; | |
1052 my $end=$hash_query{$query}{"subject_end"}; | |
1053 return ($beg,$end); | |
1054 } | |
1055 | |
1056 | |
1057 | |
1058 sub find_mature_query{ | |
1059 | |
1060 #finds the query with the highest frequency of reads and returns it | |
1061 #is used to determine the positions of the potential mature sequence | |
1062 | |
1063 my @queries=sort {$hash_query{$b}{"freq"} <=> $hash_query{$a}{"freq"}} keys %hash_query; | |
1064 my $mature_query=$queries[0]; | |
1065 return $mature_query; | |
1066 } | |
1067 | |
1068 | |
1069 | |
1070 | |
1071 sub reset_variables{ | |
1072 | |
1073 #resets the hashes for the next potential precursor | |
1074 | |
1075 # %hash_query=(); | |
1076 # %hash_comp=(); | |
1077 # %hash_bp=(); | |
1078 foreach my $key (keys %hash_query) {delete($hash_query{$key});} | |
1079 foreach my $key (keys %hash_comp) {delete($hash_comp{$key});} | |
1080 foreach my $key (keys %hash_bp) {delete($hash_bp{$key});} | |
1081 | |
1082 # $message_filter=(); | |
1083 # $message_score=(); | |
1084 # $lines=(); | |
1085 undef($message_filter); | |
1086 undef($message_score); | |
1087 undef($lines); | |
1088 return; | |
1089 } | |
1090 | |
1091 | |
1092 | |
1093 sub excise_seq{ | |
1094 | |
1095 #excise sub sequence from the potential precursor | |
1096 | |
1097 my($seq,$beg,$end,$strand)=@_; | |
1098 | |
1099 #begin can be equal to end if only one nucleotide is excised | |
1100 unless($beg<=$end){print STDERR "begin can not be smaller than end for $subject_old\n";exit;} | |
1101 | |
1102 #rarely, permuted combinations of signature and structure cause out of bound excision errors. | |
1103 #this happens once appr. every two thousand combinations | |
1104 unless($beg<=length($seq)){$out_of_bound++;return 0;} | |
1105 | |
1106 #if on the minus strand, the reverse complement should be excised | |
1107 if($strand eq "-"){$seq=revcom($seq);} | |
1108 | |
1109 #the blast parsed format is 1-indexed, substr is 0-indexed | |
1110 my $sub_seq=substr($seq,$beg-1,$end-$beg+1); | |
1111 | |
1112 return $sub_seq; | |
1113 | |
1114 } | |
1115 | |
1116 sub excise_struct{ | |
1117 | |
1118 #excise sub structure | |
1119 | |
1120 my($struct,$beg,$end,$strand)=@_; | |
1121 my $lng=length $struct; | |
1122 | |
1123 #begin can be equal to end if only one nucleotide is excised | |
1124 unless($beg<=$end){print STDERR "begin can not be smaller than end for $subject_old\n";exit;} | |
1125 | |
1126 #rarely, permuted combinations of signature and structure cause out of bound excision errors. | |
1127 #this happens once appr. every two thousand combinations | |
1128 unless($beg<=length($struct)){return 0;} | |
1129 | |
1130 #if excising relative to minus strand, positions are reversed | |
1131 if($strand eq "-"){($beg,$end)=rev_pos($beg,$end,$lng);} | |
1132 | |
1133 #the blast parsed format is 1-indexed, substr is 0-indexed | |
1134 my $sub_struct=substr($struct,$beg-1,$end-$beg+1); | |
1135 | |
1136 return $sub_struct; | |
1137 } | |
1138 | |
1139 | |
1140 sub create_hash_nuclei{ | |
1141 #parses a fasta file with sequences of known miRNAs considered for conservation purposes | |
1142 #reads the nuclei into a hash | |
1143 | |
1144 my ($file) = @_; | |
1145 my ($id, $desc, $sequence, $nucleus) = (); | |
1146 | |
1147 open (FASTA, "<$file") or die "can not open $file\n"; | |
1148 while (<FASTA>) | |
1149 { | |
1150 chomp; | |
1151 if (/^>(\S+)(.*)/) | |
1152 { | |
1153 $id = $1; | |
1154 $desc = $2; | |
1155 $sequence = ""; | |
1156 $nucleus = ""; | |
1157 while (<FASTA>){ | |
1158 chomp; | |
1159 if (/^>(\S+)(.*)/){ | |
1160 $nucleus = substr($sequence,1,$nucleus_lng); | |
1161 $nucleus =~ tr/[T]/[U]/; | |
1162 $hash_mirs{$nucleus} .="$id\t"; | |
1163 $hash_nuclei{$nucleus} += 1; | |
1164 | |
1165 $id = $1; | |
1166 $desc = $2; | |
1167 $sequence = ""; | |
1168 $nucleus = ""; | |
1169 next; | |
1170 } | |
1171 $sequence .= $_; | |
1172 } | |
1173 } | |
1174 } | |
1175 $nucleus = substr($sequence,1,$nucleus_lng); | |
1176 $nucleus =~ tr/[T]/[U]/; | |
1177 $hash_mirs{$nucleus} .="$id\t"; | |
1178 $hash_nuclei{$nucleus} += 1; | |
1179 close FASTA; | |
1180 } | |
1181 | |
1182 | |
1183 sub parse_file_struct{ | |
1184 #parses the output from RNAfoldand reads it into hashes | |
1185 my($file) = @_; | |
1186 my($id,$desc,$seq,$struct,$mfe) = (); | |
1187 open (FILE_STRUCT, "<$file") or die "can not open $file\n"; | |
1188 while (<FILE_STRUCT>){ | |
1189 chomp; | |
1190 if (/^>(\S+)\s*(.*)/){ | |
1191 $id= $1; | |
1192 $desc= $2; | |
1193 $seq= ""; | |
1194 $struct= ""; | |
1195 $mfe= ""; | |
1196 while (<FILE_STRUCT>){ | |
1197 chomp; | |
1198 if (/^>(\S+)\s*(.*)/){ | |
1199 $hash_desc{$id} = $desc; | |
1200 $hash_seq{$id} = $seq; | |
1201 $hash_struct{$id} = $struct; | |
1202 $hash_mfe{$id} = $mfe; | |
1203 $id = $1; | |
1204 $desc = $2; | |
1205 $seq = ""; | |
1206 $struct = ""; | |
1207 $mfe = ""; | |
1208 next; | |
1209 } | |
1210 if(/^\w/){ | |
1211 tr/uU/tT/; | |
1212 $seq .= $_; | |
1213 next; | |
1214 } | |
1215 if(/((\.|\(|\))+)/){$struct .=$1;} | |
1216 if(/\((\s*-\d+\.\d+)\)/){$mfe = $1;} | |
1217 } | |
1218 } | |
1219 } | |
1220 $hash_desc{$id} = $desc; | |
1221 $hash_seq{$id} = $seq; | |
1222 $hash_struct{$id} = $struct; | |
1223 $hash_mfe{$id} = $mfe; | |
1224 close FILE_STRUCT; | |
1225 return; | |
1226 } | |
1227 | |
1228 | |
1229 sub score_s{ | |
1230 | |
1231 #this score message is appended to the end of the string of score messages outputted for the potential precursor | |
1232 | |
1233 my $message=shift; | |
1234 $message_score.=$message."\n";; | |
1235 return; | |
1236 } | |
1237 | |
1238 | |
1239 | |
1240 sub score_p{ | |
1241 | |
1242 #this score message is appended to the beginning of the string of score messages outputted for the potential precursor | |
1243 | |
1244 my $message=shift; | |
1245 $message_score=$message."\n".$message_score; | |
1246 return; | |
1247 } | |
1248 | |
1249 | |
1250 | |
1251 sub filter_s{ | |
1252 | |
1253 #this filtering message is appended to the end of the string of filtering messages outputted for the potential precursor | |
1254 | |
1255 my $message=shift; | |
1256 $message_filter.=$message."\n"; | |
1257 return; | |
1258 } | |
1259 | |
1260 | |
1261 sub filter_p{ | |
1262 | |
1263 #this filtering message is appended to the beginning of the string of filtering messages outputted for the potential precursor | |
1264 | |
1265 my $message=shift; | |
1266 if(defined $message_filter){$message_filter=$message."\n".$message_filter;} | |
1267 else{$message_filter=$message."\n";} | |
1268 return; | |
1269 } | |
1270 | |
1271 | |
1272 sub find_freq{ | |
1273 | |
1274 #finds the frequency of a given read query from its id. | |
1275 | |
1276 my($query)=@_; | |
1277 | |
1278 if($query=~/x(\d+)/i){ | |
1279 my $freq=$1; | |
1280 return $freq; | |
1281 }else{ | |
1282 print STDERR "Problem with read format\n"; | |
1283 return 0; | |
1284 } | |
1285 } | |
1286 | |
1287 | |
1288 sub print_hash_comp{ | |
1289 | |
1290 #prints the 'comp' hash | |
1291 | |
1292 my @keys=sort keys %hash_comp; | |
1293 foreach my $key(@keys){ | |
1294 my $value=$hash_comp{$key}; | |
1295 print "$key \t$value\n"; | |
1296 } | |
1297 } | |
1298 | |
1299 | |
1300 | |
1301 sub print_hash_bp{ | |
1302 | |
1303 #prints the 'bp' hash | |
1304 | |
1305 my @keys=sort {$a<=>$b} keys %hash_bp; | |
1306 foreach my $key(@keys){ | |
1307 my $value=$hash_bp{$key}; | |
1308 print "$key\t$value\n"; | |
1309 } | |
1310 print "\n"; | |
1311 } | |
1312 | |
1313 | |
1314 | |
1315 sub find_strand{ | |
1316 | |
1317 #A subroutine to find the strand, parsing different blast formats | |
1318 | |
1319 my($other)=@_; | |
1320 | |
1321 my $strand="+"; | |
1322 | |
1323 if($other=~/-/){ | |
1324 $strand="-"; | |
1325 } | |
1326 | |
1327 if($other=~/minus/i){ | |
1328 $strand="-"; | |
1329 } | |
1330 return($strand); | |
1331 } | |
1332 | |
1333 | |
1334 sub contained{ | |
1335 | |
1336 #Is the stretch defined by the first positions contained in the stretch defined by the second? | |
1337 | |
1338 my($beg1,$end1,$beg2,$end2)=@_; | |
1339 | |
1340 testbeginend($beg1,$end1,$beg2,$end2); | |
1341 | |
1342 if($beg2<=$beg1 and $end1<=$end2){ | |
1343 return 1; | |
1344 }else{ | |
1345 return 0; | |
1346 } | |
1347 } | |
1348 | |
1349 | |
1350 sub testbeginend{ | |
1351 | |
1352 #Are the beginposition numerically smaller than the endposition for each pair? | |
1353 | |
1354 my($begin1,$end1,$begin2,$end2)=@_; | |
1355 | |
1356 unless($begin1<=$end1 and $begin2<=$end2){ | |
1357 print STDERR "beg can not be larger than end for $subject_old\n"; | |
1358 exit; | |
1359 } | |
1360 } | |
1361 | |
1362 | |
1363 sub rev_pos{ | |
1364 | |
1365 # The blast_parsed format always uses positions that are relative to the 5' of the given strand | |
1366 # This means that for a sequence of length n, the first nucleotide on the minus strand base pairs with | |
1367 # the n't nucleotide on the plus strand | |
1368 | |
1369 # This subroutine reverses the begin and end positions of positions of the minus strand so that they | |
1370 # are relative to the 5' end of the plus strand | |
1371 | |
1372 my($beg,$end,$lng)=@_; | |
1373 | |
1374 my $new_end=$lng-$beg+1; | |
1375 my $new_beg=$lng-$end+1; | |
1376 | |
1377 return($new_beg,$new_end); | |
1378 } | |
1379 | |
1380 sub round { | |
1381 | |
1382 #rounds to nearest integer | |
1383 | |
1384 my($number) = shift; | |
1385 return int($number + .5); | |
1386 | |
1387 } | |
1388 | |
1389 | |
1390 sub rev{ | |
1391 | |
1392 #reverses the order of nucleotides in a sequence | |
1393 | |
1394 my($sequence)=@_; | |
1395 | |
1396 my $rev=reverse $sequence; | |
1397 | |
1398 return $rev; | |
1399 } | |
1400 | |
1401 sub com{ | |
1402 | |
1403 #the complementary of a sequence | |
1404 | |
1405 my($sequence)=@_; | |
1406 | |
1407 $sequence=~tr/acgtuACGTU/TGCAATGCAA/; | |
1408 | |
1409 return $sequence; | |
1410 } | |
1411 | |
1412 sub revcom{ | |
1413 | |
1414 #reverse complement | |
1415 | |
1416 my($sequence)=@_; | |
1417 | |
1418 my $revcom=rev(com($sequence)); | |
1419 | |
1420 return $revcom; | |
1421 } | |
1422 | |
1423 | |
1424 sub max2 { | |
1425 | |
1426 #max of two numbers | |
1427 | |
1428 my($a, $b) = @_; | |
1429 return ($a>$b ? $a : $b); | |
1430 } | |
1431 | |
1432 sub min2 { | |
1433 | |
1434 #min of two numbers | |
1435 | |
1436 my($a, $b) = @_; | |
1437 return ($a<$b ? $a : $b); | |
1438 } | |
1439 | |
1440 | |
1441 | |
1442 sub score_freq{ | |
1443 | |
1444 # scores the count of reads that map to the potential precursor | |
1445 # Assumes geometric distribution as described in methods section of manuscript | |
1446 | |
1447 my $freq=shift; | |
1448 | |
1449 #parameters of known precursors and background hairpins | |
1450 my $parameter_test=0.999; | |
1451 my $parameter_control=0.6; | |
1452 | |
1453 #log_odds calculated directly to avoid underflow | |
1454 my $intercept=log((1-$parameter_test)/(1-$parameter_control)); | |
1455 my $slope=log($parameter_test/$parameter_control); | |
1456 my $log_odds=$slope*$freq+$intercept; | |
1457 | |
1458 #if no strong evidence for 3' overhangs, limit the score contribution to 0 | |
1459 unless($options{x} or $hash_comp{"star_read"}){$log_odds=min2($log_odds,0);} | |
1460 | |
1461 return $log_odds; | |
1462 } | |
1463 | |
1464 | |
1465 | |
1466 ##sub score_mfe{ | |
1467 | |
1468 # scores the minimum free energy in kCal/mol of the potential precursor | |
1469 # Assumes Gumbel distribution as described in methods section of manuscript | |
1470 | |
1471 ## my $mfe=shift; | |
1472 | |
1473 #numerical value, minimum 1 | |
1474 ## my $mfe_adj=max2(1,-$mfe); | |
1475 | |
1476 #parameters of known precursors and background hairpins, scale and location | |
1477 ## my $prob_test=prob_gumbel_discretized($mfe_adj,5.5,32); | |
1478 ## my $prob_background=prob_gumbel_discretized($mfe_adj,4.8,23); | |
1479 | |
1480 ## my $odds=$prob_test/$prob_background; | |
1481 ## my $log_odds=log($odds); | |
1482 | |
1483 ## return $log_odds; | |
1484 ##} | |
1485 | |
1486 sub score_mfe{ | |
1487 # use bignum; | |
1488 | |
1489 # scores the minimum free energy in kCal/mol of the potential precursor | |
1490 # Assumes Gumbel distribution as described in methods section of manuscript | |
1491 | |
1492 my ($mfe,$mlng)=@_; | |
1493 | |
1494 #numerical value, minimum 1 | |
1495 my $mfe_adj=max2(1,-$mfe); | |
1496 my $mfe_adj1=$mfe/$mlng; | |
1497 #parameters of known precursors and background hairpins, scale and location | |
1498 my $a=1.339e-12;my $b=2.778e-13;my $c=45.834; | |
1499 my $ev=$e**($mfe_adj1*$c); | |
1500 print STDERR "\n***",$ev,"**\t",$ev+$b,"\t"; | |
1501 my $log_odds=($a/($b+$ev)); | |
1502 | |
1503 | |
1504 my $prob_test=prob_gumbel_discretized($mfe_adj,5.5,32); | |
1505 my $prob_background=prob_gumbel_discretized($mfe_adj,4.8,23); | |
1506 | |
1507 my $odds=$prob_test/$prob_background; | |
1508 my $log_odds_2=log($odds); | |
1509 print STDERR "log_odds :",$log_odds,"\t",$log_odds_2,"\n"; | |
1510 return $log_odds; | |
1511 } | |
1512 | |
1513 | |
1514 | |
1515 sub prob_gumbel_discretized{ | |
1516 | |
1517 # discretized Gumbel distribution, probabilities within windows of 1 kCal/mol | |
1518 # uses the subroutine that calculates the cdf to find the probabilities | |
1519 | |
1520 my ($var,$scale,$location)=@_; | |
1521 | |
1522 my $bound_lower=$var-0.5; | |
1523 my $bound_upper=$var+0.5; | |
1524 | |
1525 my $cdf_lower=cdf_gumbel($bound_lower,$scale,$location); | |
1526 my $cdf_upper=cdf_gumbel($bound_upper,$scale,$location); | |
1527 | |
1528 my $prob=$cdf_upper-$cdf_lower; | |
1529 | |
1530 return $prob; | |
1531 } | |
1532 | |
1533 | |
1534 sub cdf_gumbel{ | |
1535 | |
1536 # calculates the cumulative distribution function of the Gumbel distribution | |
1537 | |
1538 my ($var,$scale,$location)=@_; | |
1539 | |
1540 my $cdf=$e**(-($e**(-($var-$location)/$scale))); | |
1541 | |
1542 return $cdf; | |
1543 } | |
1544 |