| 542 | 1 """ | 
|  | 2 Apply RAS-based scaling to reaction bounds and optionally save updated models. | 
|  | 3 | 
|  | 4 Workflow: | 
|  | 5 - Read one or more RAS matrices (patients/samples x reactions) | 
|  | 6 - Normalize and merge them, optionally adding class suffixes to sample IDs | 
|  | 7 - Build a COBRA model from a tabular CSV | 
|  | 8 - Run FVA to initialize bounds, then scale per-sample based on RAS values | 
|  | 9 - Save bounds per sample and optionally export updated models in chosen formats | 
|  | 10 """ | 
|  | 11 import argparse | 
|  | 12 from typing import Optional, Dict, Set, List, Tuple, Union | 
|  | 13 import os | 
|  | 14 import numpy as np | 
|  | 15 import pandas as pd | 
|  | 16 import cobra | 
|  | 17 from cobra import Model | 
|  | 18 import sys | 
|  | 19 from joblib import Parallel, delayed, cpu_count | 
|  | 20 | 
|  | 21 try: | 
|  | 22     from .utils import general_utils as utils | 
|  | 23     from .utils import model_utils as modelUtils | 
|  | 24 except: | 
|  | 25     import utils.general_utils as utils | 
|  | 26     import utils.model_utils as modelUtils | 
|  | 27 | 
|  | 28 ################################# process args ############################### | 
|  | 29 def process_args(args :List[str] = None) -> argparse.Namespace: | 
|  | 30     """ | 
|  | 31     Processes command-line arguments. | 
|  | 32 | 
|  | 33     Args: | 
|  | 34         args (list): List of command-line arguments. | 
|  | 35 | 
|  | 36     Returns: | 
|  | 37         Namespace: An object containing parsed arguments. | 
|  | 38     """ | 
|  | 39     parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | 
|  | 40                                      description = 'process some value\'s') | 
|  | 41 | 
|  | 42 | 
|  | 43     parser.add_argument("-mo", "--model_upload", type = str, | 
|  | 44         help = "path to input file with custom rules, if provided") | 
|  | 45 | 
|  | 46     parser.add_argument('-ol', '--out_log', | 
|  | 47                         help = "Output log") | 
|  | 48 | 
|  | 49     parser.add_argument('-td', '--tool_dir', | 
|  | 50                         type = str, | 
|  | 51                         default = os.path.dirname(os.path.abspath(__file__)), | 
|  | 52                         help = 'your tool directory (default: auto-detected package location)') | 
|  | 53 | 
|  | 54     parser.add_argument('-ir', '--input_ras', | 
|  | 55                         type=str, | 
|  | 56                         required = False, | 
|  | 57                         help = 'input ras') | 
|  | 58 | 
|  | 59     parser.add_argument('-rn', '--name', | 
|  | 60                 type=str, | 
|  | 61                 help = 'ras class names') | 
|  | 62 | 
|  | 63     parser.add_argument('-cc', '--cell_class', | 
|  | 64                     type = str, | 
|  | 65                     help = 'output of cell class') | 
|  | 66     parser.add_argument( | 
|  | 67         '-idop', '--output_path', | 
|  | 68         type = str, | 
|  | 69         default='ras_to_bounds/', | 
|  | 70         help = 'output path for maps') | 
|  | 71 | 
|  | 72     parser.add_argument('-sm', '--save_models', | 
|  | 73                     type=utils.Bool("save_models"), | 
|  | 74                     default=False, | 
|  | 75                     help = 'whether to save models with applied bounds') | 
|  | 76 | 
|  | 77     parser.add_argument('-smp', '--save_models_path', | 
|  | 78                         type = str, | 
|  | 79                         default='saved_models/', | 
|  | 80                         help = 'output path for saved models') | 
|  | 81 | 
|  | 82     parser.add_argument('-smf', '--save_models_format', | 
|  | 83                         type = str, | 
|  | 84                         default='csv', | 
|  | 85                         help = 'format for saved models (csv, xml, json, mat, yaml, tabular)') | 
|  | 86 | 
|  | 87 | 
|  | 88     ARGS = parser.parse_args(args) | 
|  | 89     return ARGS | 
|  | 90 | 
|  | 91 ########################### warning ########################################### | 
|  | 92 def warning(s :str) -> None: | 
|  | 93     """ | 
|  | 94     Log a warning message to an output log file and print it to the console. | 
|  | 95 | 
|  | 96     Args: | 
|  | 97         s (str): The warning message to be logged and printed. | 
|  | 98 | 
|  | 99     Returns: | 
|  | 100       None | 
|  | 101     """ | 
|  | 102     if ARGS.out_log: | 
|  | 103         with open(ARGS.out_log, 'a') as log: | 
|  | 104             log.write(s + "\n\n") | 
|  | 105     print(s) | 
|  | 106 | 
|  | 107 ############################ dataset input #################################### | 
|  | 108 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 109     """ | 
|  | 110     Read a dataset from a CSV file and return it as a pandas DataFrame. | 
|  | 111 | 
|  | 112     Args: | 
|  | 113         data (str): Path to the CSV file containing the dataset. | 
|  | 114         name (str): Name of the dataset, used in error messages. | 
|  | 115 | 
|  | 116     Returns: | 
|  | 117         pandas.DataFrame: DataFrame containing the dataset. | 
|  | 118 | 
|  | 119     Raises: | 
|  | 120         pd.errors.EmptyDataError: If the CSV file is empty. | 
|  | 121         sys.exit: If the CSV file has the wrong format, the execution is aborted. | 
|  | 122     """ | 
|  | 123     try: | 
|  | 124         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python') | 
|  | 125     except pd.errors.EmptyDataError: | 
|  | 126         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 127     if len(dataset.columns) < 2: | 
|  | 128         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 129     return dataset | 
|  | 130 | 
|  | 131 | 
|  | 132 def apply_ras_bounds(bounds, ras_row): | 
|  | 133     """ | 
|  | 134     Adjust the bounds of reactions in the model based on RAS values. | 
|  | 135 | 
|  | 136     Args: | 
|  | 137         bounds (pd.DataFrame): Model bounds. | 
|  | 138         ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | 
|  | 139     Returns: | 
|  | 140         new_bounds (pd.DataFrame): integrated bounds. | 
|  | 141     """ | 
|  | 142     new_bounds = bounds.copy() | 
|  | 143     for reaction in ras_row.index: | 
|  | 144         scaling_factor = ras_row[reaction] | 
|  | 145         if not np.isnan(scaling_factor): | 
|  | 146             lower_bound=bounds.loc[reaction, "lower_bound"] | 
|  | 147             upper_bound=bounds.loc[reaction, "upper_bound"] | 
|  | 148             valMax=float((upper_bound)*scaling_factor) | 
|  | 149             valMin=float((lower_bound)*scaling_factor) | 
|  | 150             if upper_bound!=0 and lower_bound==0: | 
|  | 151                 new_bounds.loc[reaction, "upper_bound"] = valMax | 
|  | 152             if upper_bound==0 and lower_bound!=0: | 
|  | 153                 new_bounds.loc[reaction, "lower_bound"] = valMin | 
|  | 154             if upper_bound!=0 and lower_bound!=0: | 
|  | 155                 new_bounds.loc[reaction, "lower_bound"] = valMin | 
|  | 156                 new_bounds.loc[reaction, "upper_bound"] = valMax | 
|  | 157     return new_bounds | 
|  | 158 | 
|  | 159 | 
|  | 160 def save_model(model, filename, output_folder, file_format='csv'): | 
|  | 161     """ | 
|  | 162     Save a COBRA model to file in the specified format. | 
|  | 163 | 
|  | 164     Args: | 
|  | 165         model (cobra.Model): The model to save. | 
|  | 166         filename (str): Base filename (without extension). | 
|  | 167         output_folder (str): Output directory. | 
|  | 168         file_format (str): File format ('xml', 'json', 'mat', 'yaml', 'tabular', 'csv'). | 
|  | 169 | 
|  | 170     Returns: | 
|  | 171         None | 
|  | 172     """ | 
|  | 173     if not os.path.exists(output_folder): | 
|  | 174         os.makedirs(output_folder) | 
|  | 175 | 
|  | 176     try: | 
|  | 177         if file_format == 'tabular' or file_format == 'csv': | 
|  | 178             # Special handling for tabular format using utils functions | 
|  | 179             filepath = os.path.join(output_folder, f"{filename}.csv") | 
|  | 180 | 
|  | 181             # Use unified function for tabular export | 
|  | 182             merged = modelUtils.export_model_to_tabular( | 
|  | 183                 model=model, | 
|  | 184                 output_path=filepath, | 
|  | 185                 include_objective=True | 
|  | 186             ) | 
|  | 187 | 
|  | 188         else: | 
|  | 189             # Standard COBRA formats | 
|  | 190             filepath = os.path.join(output_folder, f"{filename}.{file_format}") | 
|  | 191 | 
|  | 192             if file_format == 'xml': | 
|  | 193                 cobra.io.write_sbml_model(model, filepath) | 
|  | 194             elif file_format == 'json': | 
|  | 195                 cobra.io.save_json_model(model, filepath) | 
|  | 196             elif file_format == 'mat': | 
|  | 197                 cobra.io.save_matlab_model(model, filepath) | 
|  | 198             elif file_format == 'yaml': | 
|  | 199                 cobra.io.save_yaml_model(model, filepath) | 
|  | 200             else: | 
|  | 201                 raise ValueError(f"Unsupported format: {file_format}") | 
|  | 202 | 
|  | 203         print(f"Model saved: {filepath}") | 
|  | 204 | 
|  | 205     except Exception as e: | 
|  | 206         warning(f"Error saving model {filename}: {str(e)}") | 
|  | 207 | 
|  | 208 def apply_bounds_to_model(model, bounds): | 
|  | 209     """ | 
|  | 210     Apply bounds from a DataFrame to a COBRA model. | 
|  | 211 | 
|  | 212     Args: | 
|  | 213         model (cobra.Model): The metabolic model to modify. | 
|  | 214         bounds (pd.DataFrame): DataFrame with reaction bounds. | 
|  | 215 | 
|  | 216     Returns: | 
|  | 217         cobra.Model: Modified model with new bounds. | 
|  | 218     """ | 
|  | 219     model_copy = model.copy() | 
|  | 220     for reaction_id in bounds.index: | 
|  | 221         try: | 
|  | 222             reaction = model_copy.reactions.get_by_id(reaction_id) | 
|  | 223             reaction.lower_bound = bounds.loc[reaction_id, "lower_bound"] | 
|  | 224             reaction.upper_bound = bounds.loc[reaction_id, "upper_bound"] | 
|  | 225         except KeyError: | 
|  | 226             # Reaction not found in model, skip | 
|  | 227             continue | 
|  | 228     return model_copy | 
|  | 229 | 
|  | 230 def process_ras_cell(cellName, ras_row, model, rxns_ids, output_folder, save_models=False, save_models_path='saved_models/', save_models_format='csv'): | 
|  | 231     """ | 
|  | 232     Process a single RAS cell, apply bounds, and save the bounds to a CSV file. | 
|  | 233 | 
|  | 234     Args: | 
|  | 235         cellName (str): The name of the RAS cell (used for naming the output file). | 
|  | 236         ras_row (pd.Series): A row from a RAS DataFrame containing scaling factors for reaction bounds. | 
|  | 237         model (cobra.Model): The metabolic model to be modified. | 
|  | 238         rxns_ids (list of str): List of reaction IDs to which the scaling factors will be applied. | 
|  | 239         output_folder (str): Folder path where the output CSV file will be saved. | 
|  | 240         save_models (bool): Whether to save models with applied bounds. | 
|  | 241         save_models_path (str): Path where to save models. | 
|  | 242         save_models_format (str): Format for saved models. | 
|  | 243 | 
|  | 244     Returns: | 
|  | 245         None | 
|  | 246     """ | 
|  | 247     bounds = pd.DataFrame([(rxn.lower_bound, rxn.upper_bound) for rxn in model.reactions], index=rxns_ids, columns=["lower_bound", "upper_bound"]) | 
|  | 248     new_bounds = apply_ras_bounds(bounds, ras_row) | 
|  | 249     new_bounds.to_csv(output_folder + cellName + ".csv", sep='\t', index=True) | 
|  | 250 | 
|  | 251     # Save model if requested | 
|  | 252     if save_models: | 
|  | 253         modified_model = apply_bounds_to_model(model, new_bounds) | 
|  | 254         save_model(modified_model, cellName, save_models_path, save_models_format) | 
|  | 255 | 
|  | 256     return | 
|  | 257 | 
|  | 258 def generate_bounds_model(model: cobra.Model, ras=None, output_folder='output/', save_models=False, save_models_path='saved_models/', save_models_format='csv') -> pd.DataFrame: | 
|  | 259     """ | 
|  | 260     Generate reaction bounds for a metabolic model based on medium conditions and optional RAS adjustments. | 
|  | 261 | 
|  | 262     Args: | 
|  | 263         model (cobra.Model): The metabolic model for which bounds will be generated. | 
|  | 264         ras (pd.DataFrame, optional): RAS pandas dataframe. Defaults to None. | 
|  | 265         output_folder (str, optional): Folder path where output CSV files will be saved. Defaults to 'output/'. | 
|  | 266         save_models (bool): Whether to save models with applied bounds. | 
|  | 267         save_models_path (str): Path where to save models. | 
|  | 268         save_models_format (str): Format for saved models. | 
|  | 269 | 
|  | 270     Returns: | 
|  | 271         pd.DataFrame: DataFrame containing the bounds of reactions in the model. | 
|  | 272     """ | 
|  | 273     rxns_ids = [rxn.id for rxn in model.reactions] | 
|  | 274 | 
|  | 275     # Perform Flux Variability Analysis (FVA) on this medium | 
|  | 276     df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8) | 
|  | 277 | 
|  | 278     # Set FVA bounds | 
|  | 279     for reaction in rxns_ids: | 
|  | 280         model.reactions.get_by_id(reaction).lower_bound = float(df_FVA.loc[reaction, "minimum"]) | 
|  | 281         model.reactions.get_by_id(reaction).upper_bound = float(df_FVA.loc[reaction, "maximum"]) | 
|  | 282 | 
|  | 283     if ras is not None: | 
|  | 284         Parallel(n_jobs=cpu_count())(delayed(process_ras_cell)( | 
|  | 285             cellName, ras_row, model, rxns_ids, output_folder, | 
|  | 286             save_models, save_models_path, save_models_format | 
|  | 287         ) for cellName, ras_row in ras.iterrows()) | 
|  | 288     else: | 
|  | 289         raise ValueError("RAS DataFrame is None. Cannot generate bounds without RAS data.") | 
|  | 290     return | 
|  | 291 | 
|  | 292 ############################# main ########################################### | 
|  | 293 def main(args:List[str] = None) -> None: | 
|  | 294     """ | 
|  | 295     Initialize and execute RAS-to-bounds pipeline based on the frontend input arguments. | 
|  | 296 | 
|  | 297     Returns: | 
|  | 298         None | 
|  | 299     """ | 
|  | 300     if not os.path.exists('ras_to_bounds'): | 
|  | 301         os.makedirs('ras_to_bounds') | 
|  | 302 | 
|  | 303     global ARGS | 
|  | 304     ARGS = process_args(args) | 
|  | 305 | 
|  | 306 | 
|  | 307     ras_file_list = ARGS.input_ras.split(",") | 
|  | 308     ras_file_names = ARGS.name.split(",") | 
|  | 309     if len(ras_file_names) != len(set(ras_file_names)): | 
|  | 310         error_message = "Duplicated file names in the uploaded RAS matrices." | 
|  | 311         warning(error_message) | 
|  | 312         raise ValueError(error_message) | 
|  | 313 | 
|  | 314     ras_class_names = [] | 
|  | 315     for file in ras_file_names: | 
|  | 316         ras_class_names.append(file.rsplit(".", 1)[0]) | 
|  | 317     ras_list = [] | 
|  | 318     class_assignments = pd.DataFrame(columns=["Patient_ID", "Class"]) | 
|  | 319     for ras_matrix, ras_class_name in zip(ras_file_list, ras_class_names): | 
|  | 320         ras = read_dataset(ras_matrix, "ras dataset") | 
|  | 321         ras.replace("None", None, inplace=True) | 
|  | 322         ras.set_index("Reactions", drop=True, inplace=True) | 
|  | 323         ras = ras.T | 
|  | 324         ras = ras.astype(float) | 
|  | 325         if(len(ras_file_list)>1): | 
|  | 326             # Append class name to patient id (DataFrame index) | 
|  | 327             ras.index = [f"{idx}_{ras_class_name}" for idx in ras.index] | 
|  | 328         else: | 
|  | 329             ras.index = [f"{idx}" for idx in ras.index] | 
|  | 330         ras_list.append(ras) | 
|  | 331         for patient_id in ras.index: | 
|  | 332             class_assignments.loc[class_assignments.shape[0]] = [patient_id, ras_class_name] | 
|  | 333 | 
|  | 334 | 
|  | 335     # Concatenate all RAS DataFrames into a single DataFrame | 
|  | 336         ras_combined = pd.concat(ras_list, axis=0) | 
|  | 337     # Normalize RAS values column-wise by max RAS | 
|  | 338         ras_combined = ras_combined.div(ras_combined.max(axis=0)) | 
|  | 339         ras_combined.dropna(axis=1, how='all', inplace=True) | 
|  | 340 | 
|  | 341     model = modelUtils.build_cobra_model_from_csv(ARGS.model_upload) | 
|  | 342 | 
|  | 343     validation = modelUtils.validate_model(model) | 
|  | 344 | 
|  | 345     print("\n=== MODEL VALIDATION ===") | 
|  | 346     for key, value in validation.items(): | 
|  | 347         print(f"{key}: {value}") | 
|  | 348 | 
|  | 349 | 
|  | 350     generate_bounds_model(model, ras=ras_combined, output_folder=ARGS.output_path, | 
|  | 351                     save_models=ARGS.save_models, save_models_path=ARGS.save_models_path, | 
|  | 352                     save_models_format=ARGS.save_models_format) | 
|  | 353     class_assignments.to_csv(ARGS.cell_class, sep='\t', index=False) | 
|  | 354 | 
|  | 355 | 
|  | 356     return | 
|  | 357 | 
|  | 358 ############################################################################## | 
|  | 359 if __name__ == "__main__": | 
| 539 | 360     main() |