| 
456
 | 
     1 """
 | 
| 
 | 
     2 Flux sampling and analysis utilities for COBRA models.
 | 
| 
 | 
     3 
 | 
| 
 | 
     4 This script supports two modes:
 | 
| 
 | 
     5 - Mode 1 (model_and_bounds=True): load a base model and apply bounds from
 | 
| 
 | 
     6     separate files before sampling.
 | 
| 
 | 
     7 - Mode 2 (model_and_bounds=False): load complete models and sample directly.
 | 
| 
 | 
     8 
 | 
| 
 | 
     9 Sampling algorithms supported: OPTGP and CBS. Outputs include flux samples
 | 
| 
 | 
    10 and optional analyses (pFBA, FVA, sensitivity), saved as tabular files.
 | 
| 
 | 
    11 """
 | 
| 
 | 
    12 
 | 
| 
410
 | 
    13 import argparse
 | 
| 
 | 
    14 import utils.general_utils as utils
 | 
| 
456
 | 
    15 from typing import List
 | 
| 
410
 | 
    16 import os
 | 
| 
 | 
    17 import pandas as pd
 | 
| 
461
 | 
    18 import numpy as np
 | 
| 
410
 | 
    19 import cobra
 | 
| 
 | 
    20 import utils.CBS_backend as CBS_backend
 | 
| 
 | 
    21 from joblib import Parallel, delayed, cpu_count
 | 
| 
 | 
    22 from cobra.sampling import OptGPSampler
 | 
| 
 | 
    23 import sys
 | 
| 
419
 | 
    24 import utils.model_utils as model_utils
 | 
| 
410
 | 
    25 
 | 
| 
 | 
    26 
 | 
| 
 | 
    27 ################################# process args ###############################
 | 
| 
461
 | 
    28 def process_args(args: List[str] = None) -> argparse.Namespace:
 | 
| 
410
 | 
    29     """
 | 
| 
 | 
    30     Processes command-line arguments.
 | 
| 
461
 | 
    31     
 | 
| 
410
 | 
    32     Args:
 | 
| 
 | 
    33         args (list): List of command-line arguments.
 | 
| 
461
 | 
    34     
 | 
| 
410
 | 
    35     Returns:
 | 
| 
 | 
    36         Namespace: An object containing parsed arguments.
 | 
| 
 | 
    37     """
 | 
| 
461
 | 
    38     parser = argparse.ArgumentParser(usage='%(prog)s [options]',
 | 
| 
 | 
    39                                      description='process some value\'s')
 | 
| 
 | 
    40     
 | 
| 
 | 
    41     parser.add_argument("-mo", "--model_upload", type=str,
 | 
| 
 | 
    42         help="path to input file with custom rules, if provided")
 | 
| 
410
 | 
    43     
 | 
| 
461
 | 
    44     parser.add_argument("-mab", "--model_and_bounds", type=str,
 | 
| 
 | 
    45         choices=['True', 'False'],
 | 
| 
 | 
    46         required=True,
 | 
| 
 | 
    47         help="upload mode: True for model+bounds, False for complete models")
 | 
| 
 | 
    48     
 | 
| 
469
 | 
    49     parser.add_argument("-ens", "--sampling_enabled", type=str,
 | 
| 
470
 | 
    50         choices=['true', 'false'],
 | 
| 
469
 | 
    51         required=True,
 | 
| 
470
 | 
    52         help="enable sampling: 'true' for sampling, 'false' for no sampling")
 | 
| 
469
 | 
    53     
 | 
| 
461
 | 
    54     parser.add_argument('-ol', '--out_log',
 | 
| 
 | 
    55                         help="Output log")
 | 
| 
410
 | 
    56     
 | 
| 
 | 
    57     parser.add_argument('-td', '--tool_dir',
 | 
| 
461
 | 
    58                         type=str,
 | 
| 
 | 
    59                         required=True,
 | 
| 
 | 
    60                         help='your tool directory')
 | 
| 
410
 | 
    61     
 | 
| 
 | 
    62     parser.add_argument('-in', '--input',
 | 
| 
461
 | 
    63                         required=True,
 | 
| 
 | 
    64                         type=str,
 | 
| 
 | 
    65                         help='input bounds files or complete model files')
 | 
| 
410
 | 
    66     
 | 
| 
419
 | 
    67     parser.add_argument('-ni', '--name',
 | 
| 
461
 | 
    68                         required=True,
 | 
| 
410
 | 
    69                         type=str,
 | 
| 
461
 | 
    70                         help='cell names')
 | 
| 
410
 | 
    71     
 | 
| 
 | 
    72     parser.add_argument('-a', '--algorithm',
 | 
| 
461
 | 
    73                         type=str,
 | 
| 
 | 
    74                         choices=['OPTGP', 'CBS'],
 | 
| 
 | 
    75                         required=True,
 | 
| 
 | 
    76                         help='choose sampling algorithm')
 | 
| 
410
 | 
    77     
 | 
| 
461
 | 
    78     parser.add_argument('-th', '--thinning',
 | 
| 
 | 
    79                         type=int,
 | 
| 
 | 
    80                         default=100,
 | 
| 
473
 | 
    81                         required=True,
 | 
| 
461
 | 
    82                         help='choose thinning')
 | 
| 
410
 | 
    83     
 | 
| 
461
 | 
    84     parser.add_argument('-ns', '--n_samples',
 | 
| 
 | 
    85                         type=int,
 | 
| 
 | 
    86                         required=True,
 | 
| 
 | 
    87                         help='choose how many samples (set to 0 for optimization only)')
 | 
| 
410
 | 
    88     
 | 
| 
461
 | 
    89     parser.add_argument('-sd', '--seed',
 | 
| 
 | 
    90                         type=int,
 | 
| 
 | 
    91                         required=True,
 | 
| 
 | 
    92                         help='seed for random number generation')
 | 
| 
410
 | 
    93     
 | 
| 
461
 | 
    94     parser.add_argument('-nb', '--n_batches',
 | 
| 
 | 
    95                         type=int,
 | 
| 
 | 
    96                         required=True,
 | 
| 
 | 
    97                         help='choose how many batches')
 | 
| 
410
 | 
    98     
 | 
| 
430
 | 
    99     parser.add_argument('-opt', '--perc_opt',
 | 
| 
461
 | 
   100                         type=float,
 | 
| 
430
 | 
   101                         default=0.9,
 | 
| 
473
 | 
   102                         required=True,
 | 
| 
461
 | 
   103                         help='choose the fraction of optimality for FVA (0-1)')
 | 
| 
430
 | 
   104     
 | 
| 
461
 | 
   105     parser.add_argument('-ot', '--output_type',
 | 
| 
 | 
   106                         type=str,
 | 
| 
 | 
   107                         required=True,
 | 
| 
 | 
   108                         help='output type for sampling results')
 | 
| 
410
 | 
   109     
 | 
| 
461
 | 
   110     parser.add_argument('-ota', '--output_type_analysis',
 | 
| 
 | 
   111                         type=str,
 | 
| 
 | 
   112                         required=False,
 | 
| 
 | 
   113                         help='output type analysis (optimization methods)')
 | 
| 
410
 | 
   114     
 | 
| 
461
 | 
   115     parser.add_argument('-idop', '--output_path',
 | 
| 
 | 
   116                         type=str,
 | 
| 
410
 | 
   117                         default='flux_simulation',
 | 
| 
461
 | 
   118                         help='output path for maps')
 | 
| 
410
 | 
   119     
 | 
| 
 | 
   120     ARGS = parser.parse_args(args)
 | 
| 
 | 
   121     return ARGS
 | 
| 
 | 
   122 ########################### warning ###########################################
 | 
| 
 | 
   123 def warning(s :str) -> None:
 | 
| 
 | 
   124     """
 | 
| 
 | 
   125     Log a warning message to an output log file and print it to the console.
 | 
| 
 | 
   126 
 | 
| 
 | 
   127     Args:
 | 
| 
 | 
   128         s (str): The warning message to be logged and printed.
 | 
| 
 | 
   129     
 | 
| 
 | 
   130     Returns:
 | 
| 
 | 
   131       None
 | 
| 
 | 
   132     """
 | 
| 
 | 
   133     with open(ARGS.out_log, 'a') as log:
 | 
| 
 | 
   134         log.write(s + "\n\n")
 | 
| 
 | 
   135     print(s)
 | 
| 
 | 
   136 
 | 
| 
 | 
   137 
 | 
| 
 | 
   138 def write_to_file(dataset: pd.DataFrame, name: str, keep_index:bool=False)->None:
 | 
| 
456
 | 
   139     """
 | 
| 
 | 
   140     Write a DataFrame to a TSV file under ARGS.output_path with a given base name.
 | 
| 
 | 
   141 
 | 
| 
 | 
   142     Args:
 | 
| 
 | 
   143         dataset: The DataFrame to write.
 | 
| 
 | 
   144         name: Base file name (without extension).
 | 
| 
 | 
   145         keep_index: Whether to keep the DataFrame index in the file.
 | 
| 
 | 
   146 
 | 
| 
 | 
   147     Returns:
 | 
| 
 | 
   148         None
 | 
| 
 | 
   149     """
 | 
| 
410
 | 
   150     dataset.index.name = 'Reactions'
 | 
| 
 | 
   151     dataset.to_csv(ARGS.output_path + "/" + name + ".csv", sep = '\t', index = keep_index)
 | 
| 
 | 
   152 
 | 
| 
 | 
   153 ############################ dataset input ####################################
 | 
| 
 | 
   154 def read_dataset(data :str, name :str) -> pd.DataFrame:
 | 
| 
 | 
   155     """
 | 
| 
 | 
   156     Read a dataset from a CSV file and return it as a pandas DataFrame.
 | 
| 
 | 
   157 
 | 
| 
 | 
   158     Args:
 | 
| 
 | 
   159         data (str): Path to the CSV file containing the dataset.
 | 
| 
 | 
   160         name (str): Name of the dataset, used in error messages.
 | 
| 
 | 
   161 
 | 
| 
 | 
   162     Returns:
 | 
| 
 | 
   163         pandas.DataFrame: DataFrame containing the dataset.
 | 
| 
 | 
   164 
 | 
| 
 | 
   165     Raises:
 | 
| 
 | 
   166         pd.errors.EmptyDataError: If the CSV file is empty.
 | 
| 
 | 
   167         sys.exit: If the CSV file has the wrong format, the execution is aborted.
 | 
| 
 | 
   168     """
 | 
| 
 | 
   169     try:
 | 
| 
 | 
   170         dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python')
 | 
| 
 | 
   171     except pd.errors.EmptyDataError:
 | 
| 
 | 
   172         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   173     if len(dataset.columns) < 2:
 | 
| 
 | 
   174         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
   175     return dataset
 | 
| 
 | 
   176 
 | 
| 
 | 
   177 
 | 
| 
 | 
   178 
 | 
| 
461
 | 
   179 def OPTGP_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, thinning: int = 100, n_batches: int = 1, seed: int = 0) -> None:
 | 
| 
410
 | 
   180     """
 | 
| 
 | 
   181     Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files.
 | 
| 
461
 | 
   182     
 | 
| 
410
 | 
   183     Args:
 | 
| 
 | 
   184         model (cobra.Model): The COBRA model to sample from.
 | 
| 
 | 
   185         model_name (str): The name of the model, used in naming output files.
 | 
| 
 | 
   186         n_samples (int, optional): Number of samples per batch. Default is 1000.
 | 
| 
 | 
   187         thinning (int, optional): Thinning parameter for the sampler. Default is 100.
 | 
| 
 | 
   188         n_batches (int, optional): Number of batches to run. Default is 1.
 | 
| 
 | 
   189         seed (int, optional): Random seed for reproducibility. Default is 0.
 | 
| 
461
 | 
   190         
 | 
| 
410
 | 
   191     Returns:
 | 
| 
 | 
   192         None
 | 
| 
 | 
   193     """
 | 
| 
461
 | 
   194     import numpy as np
 | 
| 
 | 
   195     
 | 
| 
 | 
   196     # Get reaction IDs for consistent column ordering
 | 
| 
 | 
   197     reaction_ids = [rxn.id for rxn in model.reactions]
 | 
| 
 | 
   198     
 | 
| 
 | 
   199     # Sample and save each batch as numpy file
 | 
| 
 | 
   200     for i in range(n_batches):
 | 
| 
410
 | 
   201         optgp = OptGPSampler(model, thinning, seed)
 | 
| 
 | 
   202         samples = optgp.sample(n_samples)
 | 
| 
461
 | 
   203         
 | 
| 
 | 
   204         # Save as numpy array (more memory efficient)
 | 
| 
 | 
   205         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy"
 | 
| 
 | 
   206         np.save(batch_filename, samples.values)
 | 
| 
 | 
   207         
 | 
| 
 | 
   208         seed += 1
 | 
| 
 | 
   209     
 | 
| 
 | 
   210     # Merge all batches into a single DataFrame
 | 
| 
 | 
   211     all_samples = []
 | 
| 
 | 
   212     
 | 
| 
 | 
   213     for i in range(n_batches):
 | 
| 
 | 
   214         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy"
 | 
| 
 | 
   215         batch_data = np.load(batch_filename)
 | 
| 
 | 
   216         all_samples.append(batch_data)
 | 
| 
 | 
   217     
 | 
| 
 | 
   218     # Concatenate all batches
 | 
| 
 | 
   219     samplesTotal_array = np.vstack(all_samples)
 | 
| 
 | 
   220     
 | 
| 
 | 
   221     # Convert back to DataFrame with proper column names
 | 
| 
 | 
   222     samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids)
 | 
| 
 | 
   223     
 | 
| 
 | 
   224     # Save the final merged result as CSV
 | 
| 
410
 | 
   225     write_to_file(samplesTotal.T, model_name, True)
 | 
| 
461
 | 
   226     
 | 
| 
 | 
   227     # Clean up temporary numpy files
 | 
| 
 | 
   228     for i in range(n_batches):
 | 
| 
 | 
   229         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy"
 | 
| 
 | 
   230         if os.path.exists(batch_filename):
 | 
| 
 | 
   231             os.remove(batch_filename)
 | 
| 
410
 | 
   232 
 | 
| 
 | 
   233 
 | 
| 
461
 | 
   234 def CBS_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, n_batches: int = 1, seed: int = 0) -> None:
 | 
| 
410
 | 
   235     """
 | 
| 
 | 
   236     Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files.
 | 
| 
461
 | 
   237     
 | 
| 
410
 | 
   238     Args:
 | 
| 
 | 
   239         model (cobra.Model): The COBRA model to sample from.
 | 
| 
 | 
   240         model_name (str): The name of the model, used in naming output files.
 | 
| 
 | 
   241         n_samples (int, optional): Number of samples per batch. Default is 1000.
 | 
| 
 | 
   242         n_batches (int, optional): Number of batches to run. Default is 1.
 | 
| 
 | 
   243         seed (int, optional): Random seed for reproducibility. Default is 0.
 | 
| 
461
 | 
   244         
 | 
| 
410
 | 
   245     Returns:
 | 
| 
 | 
   246         None
 | 
| 
 | 
   247     """
 | 
| 
461
 | 
   248     import numpy as np
 | 
| 
 | 
   249     
 | 
| 
 | 
   250     # Get reaction IDs for consistent column ordering
 | 
| 
 | 
   251     reaction_ids = [reaction.id for reaction in model.reactions]
 | 
| 
 | 
   252     
 | 
| 
 | 
   253     # Perform FVA analysis once for all batches
 | 
| 
 | 
   254     df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0).round(6)
 | 
| 
 | 
   255     
 | 
| 
 | 
   256     # Generate random objective functions for all samples across all batches
 | 
| 
 | 
   257     df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples * n_batches, df_FVA, seed=seed)
 | 
| 
410
 | 
   258     
 | 
| 
461
 | 
   259     # Sample and save each batch as numpy file
 | 
| 
 | 
   260     for i in range(n_batches):
 | 
| 
 | 
   261         samples = pd.DataFrame(columns=reaction_ids, index=range(n_samples))
 | 
| 
 | 
   262         
 | 
| 
410
 | 
   263         try:
 | 
| 
461
 | 
   264             CBS_backend.randomObjectiveFunctionSampling(
 | 
| 
 | 
   265                 model, 
 | 
| 
 | 
   266                 n_samples, 
 | 
| 
 | 
   267                 df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples], 
 | 
| 
 | 
   268                 samples
 | 
| 
 | 
   269             )
 | 
| 
410
 | 
   270         except Exception as e:
 | 
| 
 | 
   271             utils.logWarning(
 | 
| 
461
 | 
   272                 f"Warning: GLPK solver has failed for {model_name}. Trying with COBRA interface. Error: {str(e)}",
 | 
| 
 | 
   273                 ARGS.out_log
 | 
| 
 | 
   274             )
 | 
| 
 | 
   275             CBS_backend.randomObjectiveFunctionSampling_cobrapy(
 | 
| 
 | 
   276                 model, 
 | 
| 
 | 
   277                 n_samples, 
 | 
| 
 | 
   278                 df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples],
 | 
| 
 | 
   279                 samples
 | 
| 
 | 
   280             )
 | 
| 
 | 
   281         
 | 
| 
 | 
   282         # Save as numpy array (more memory efficient)
 | 
| 
 | 
   283         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy"
 | 
| 
 | 
   284         utils.logWarning(batch_filename, ARGS.out_log)
 | 
| 
 | 
   285         np.save(batch_filename, samples.values)
 | 
| 
 | 
   286     
 | 
| 
 | 
   287     # Merge all batches into a single DataFrame
 | 
| 
 | 
   288     all_samples = []
 | 
| 
 | 
   289     
 | 
| 
 | 
   290     for i in range(n_batches):
 | 
| 
 | 
   291         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy"
 | 
| 
 | 
   292         batch_data = np.load(batch_filename)
 | 
| 
 | 
   293         all_samples.append(batch_data)
 | 
| 
 | 
   294     
 | 
| 
 | 
   295     # Concatenate all batches
 | 
| 
 | 
   296     samplesTotal_array = np.vstack(all_samples)
 | 
| 
 | 
   297     
 | 
| 
 | 
   298     # Convert back to DataFrame with proper column names
 | 
| 
 | 
   299     samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids)
 | 
| 
 | 
   300     
 | 
| 
 | 
   301     # Save the final merged result as CSV
 | 
| 
410
 | 
   302     write_to_file(samplesTotal.T, model_name, True)
 | 
| 
461
 | 
   303     
 | 
| 
 | 
   304     # Clean up temporary numpy files
 | 
| 
 | 
   305     for i in range(n_batches):
 | 
| 
 | 
   306         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy"
 | 
| 
 | 
   307         if os.path.exists(batch_filename):
 | 
| 
 | 
   308             os.remove(batch_filename)
 | 
| 
410
 | 
   309 
 | 
| 
 | 
   310 
 | 
| 
419
 | 
   311 
 | 
| 
 | 
   312 def model_sampler_with_bounds(model_input_original: cobra.Model, bounds_path: str, cell_name: str) -> List[pd.DataFrame]:
 | 
| 
410
 | 
   313     """
 | 
| 
419
 | 
   314     MODE 1: Prepares the model with bounds from separate bounds file and performs sampling.
 | 
| 
410
 | 
   315 
 | 
| 
 | 
   316     Args:
 | 
| 
 | 
   317         model_input_original (cobra.Model): The original COBRA model.
 | 
| 
 | 
   318         bounds_path (str): Path to the CSV file containing the bounds dataset.
 | 
| 
 | 
   319         cell_name (str): Name of the cell, used to generate filenames for output.
 | 
| 
 | 
   320 
 | 
| 
 | 
   321     Returns:
 | 
| 
 | 
   322         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results.
 | 
| 
 | 
   323     """
 | 
| 
 | 
   324 
 | 
| 
 | 
   325     model_input = model_input_original.copy()
 | 
| 
 | 
   326     bounds_df = read_dataset(bounds_path, "bounds dataset")
 | 
| 
419
 | 
   327     
 | 
| 
 | 
   328     # Apply bounds to model
 | 
| 
410
 | 
   329     for rxn_index, row in bounds_df.iterrows():
 | 
| 
419
 | 
   330         try:
 | 
| 
 | 
   331             model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound
 | 
| 
 | 
   332             model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound
 | 
| 
 | 
   333         except KeyError:
 | 
| 
 | 
   334             warning(f"Warning: Reaction {rxn_index} not found in model. Skipping.")
 | 
| 
410
 | 
   335     
 | 
| 
419
 | 
   336     return perform_sampling_and_analysis(model_input, cell_name)
 | 
| 
 | 
   337 
 | 
| 
 | 
   338 
 | 
| 
 | 
   339 def perform_sampling_and_analysis(model_input: cobra.Model, cell_name: str) -> List[pd.DataFrame]:
 | 
| 
 | 
   340     """
 | 
| 
 | 
   341     Common function to perform sampling and analysis on a prepared model.
 | 
| 
 | 
   342 
 | 
| 
 | 
   343     Args:
 | 
| 
 | 
   344         model_input (cobra.Model): The prepared COBRA model with bounds applied.
 | 
| 
 | 
   345         cell_name (str): Name of the cell, used to generate filenames for output.
 | 
| 
 | 
   346 
 | 
| 
 | 
   347     Returns:
 | 
| 
 | 
   348         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results.
 | 
| 
 | 
   349     """
 | 
| 
410
 | 
   350 
 | 
| 
473
 | 
   351     if ARGS.sampling_enabled == "true":
 | 
| 
469
 | 
   352     
 | 
| 
 | 
   353         if ARGS.algorithm == 'OPTGP':
 | 
| 
 | 
   354             OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed)
 | 
| 
 | 
   355         elif ARGS.algorithm == 'CBS':
 | 
| 
 | 
   356             CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed)
 | 
| 
410
 | 
   357 
 | 
| 
469
 | 
   358         df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types)
 | 
| 
410
 | 
   359 
 | 
| 
469
 | 
   360         if("fluxes" not in ARGS.output_types):
 | 
| 
 | 
   361             os.remove(ARGS.output_path + "/" + cell_name + '.csv')
 | 
| 
 | 
   362 
 | 
| 
 | 
   363         returnList = [df_mean, df_median, df_quantiles]
 | 
| 
410
 | 
   364 
 | 
| 
 | 
   365     df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis)
 | 
| 
 | 
   366 
 | 
| 
 | 
   367     if("pFBA" in ARGS.output_type_analysis):
 | 
| 
 | 
   368         returnList.append(df_pFBA)
 | 
| 
 | 
   369     if("FVA" in ARGS.output_type_analysis):
 | 
| 
 | 
   370         returnList.append(df_FVA)
 | 
| 
 | 
   371     if("sensitivity" in ARGS.output_type_analysis):
 | 
| 
 | 
   372         returnList.append(df_sensitivity)
 | 
| 
 | 
   373 
 | 
| 
 | 
   374     return returnList
 | 
| 
 | 
   375 
 | 
| 
 | 
   376 def fluxes_statistics(model_name: str,  output_types:List)-> List[pd.DataFrame]:
 | 
| 
 | 
   377     """
 | 
| 
 | 
   378     Computes statistics (mean, median, quantiles) for the fluxes.
 | 
| 
 | 
   379 
 | 
| 
 | 
   380     Args:
 | 
| 
 | 
   381         model_name (str): Name of the model, used in filename for input.
 | 
| 
 | 
   382         output_types (List[str]): Types of statistics to compute (mean, median, quantiles).
 | 
| 
 | 
   383 
 | 
| 
 | 
   384     Returns:
 | 
| 
 | 
   385         List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics.
 | 
| 
 | 
   386     """
 | 
| 
 | 
   387 
 | 
| 
 | 
   388     df_mean = pd.DataFrame()
 | 
| 
 | 
   389     df_median= pd.DataFrame()
 | 
| 
 | 
   390     df_quantiles= pd.DataFrame()
 | 
| 
 | 
   391 
 | 
| 
 | 
   392     df_samples = pd.read_csv(ARGS.output_path + "/"  +  model_name + '.csv', sep = '\t', index_col = 0).T
 | 
| 
 | 
   393     df_samples = df_samples.round(8)
 | 
| 
 | 
   394 
 | 
| 
 | 
   395     for output_type in output_types:
 | 
| 
 | 
   396         if(output_type == "mean"):
 | 
| 
 | 
   397             df_mean = df_samples.mean()
 | 
| 
 | 
   398             df_mean = df_mean.to_frame().T
 | 
| 
 | 
   399             df_mean = df_mean.reset_index(drop=True)
 | 
| 
 | 
   400             df_mean.index = [model_name]
 | 
| 
 | 
   401         elif(output_type == "median"):
 | 
| 
 | 
   402             df_median = df_samples.median()
 | 
| 
 | 
   403             df_median = df_median.to_frame().T
 | 
| 
 | 
   404             df_median = df_median.reset_index(drop=True)
 | 
| 
 | 
   405             df_median.index = [model_name]
 | 
| 
 | 
   406         elif(output_type == "quantiles"):
 | 
| 
 | 
   407             newRow = []
 | 
| 
 | 
   408             cols = []
 | 
| 
 | 
   409             for rxn in df_samples.columns:
 | 
| 
 | 
   410                 quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75])
 | 
| 
 | 
   411                 newRow.append(quantiles[0.25])
 | 
| 
 | 
   412                 cols.append(rxn + "_q1")
 | 
| 
 | 
   413                 newRow.append(quantiles[0.5])
 | 
| 
 | 
   414                 cols.append(rxn + "_q2")
 | 
| 
 | 
   415                 newRow.append(quantiles[0.75])
 | 
| 
 | 
   416                 cols.append(rxn + "_q3")
 | 
| 
 | 
   417             df_quantiles = pd.DataFrame(columns=cols)
 | 
| 
 | 
   418             df_quantiles.loc[0] = newRow
 | 
| 
 | 
   419             df_quantiles = df_quantiles.reset_index(drop=True)
 | 
| 
 | 
   420             df_quantiles.index = [model_name]
 | 
| 
 | 
   421     
 | 
| 
 | 
   422     return df_mean, df_median, df_quantiles
 | 
| 
 | 
   423 
 | 
| 
 | 
   424 def fluxes_analysis(model:cobra.Model,  model_name:str, output_types:List)-> List[pd.DataFrame]:
 | 
| 
 | 
   425     """
 | 
| 
 | 
   426     Performs flux analysis including pFBA, FVA, and sensitivity analysis.
 | 
| 
 | 
   427 
 | 
| 
 | 
   428     Args:
 | 
| 
 | 
   429         model (cobra.Model): The COBRA model to analyze.
 | 
| 
 | 
   430         model_name (str): Name of the model, used in filenames for output.
 | 
| 
 | 
   431         output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity).
 | 
| 
 | 
   432 
 | 
| 
 | 
   433     Returns:
 | 
| 
 | 
   434         List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results.
 | 
| 
 | 
   435     """
 | 
| 
 | 
   436 
 | 
| 
 | 
   437     df_pFBA = pd.DataFrame()
 | 
| 
 | 
   438     df_FVA= pd.DataFrame()
 | 
| 
 | 
   439     df_sensitivity= pd.DataFrame()
 | 
| 
 | 
   440 
 | 
| 
 | 
   441     for output_type in output_types:
 | 
| 
 | 
   442         if(output_type == "pFBA"):
 | 
| 
 | 
   443             model.objective = "Biomass"
 | 
| 
 | 
   444             solution = cobra.flux_analysis.pfba(model)
 | 
| 
 | 
   445             fluxes = solution.fluxes
 | 
| 
419
 | 
   446             df_pFBA.loc[0,[rxn.id for rxn in model.reactions]] = fluxes.tolist()
 | 
| 
410
 | 
   447             df_pFBA = df_pFBA.reset_index(drop=True)
 | 
| 
 | 
   448             df_pFBA.index = [model_name]
 | 
| 
 | 
   449             df_pFBA = df_pFBA.astype(float).round(6)
 | 
| 
 | 
   450         elif(output_type == "FVA"):
 | 
| 
430
 | 
   451             fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=ARGS.perc_opt, processes=1).round(8)
 | 
| 
410
 | 
   452             columns = []
 | 
| 
 | 
   453             for rxn in fva.index.to_list():
 | 
| 
 | 
   454                 columns.append(rxn + "_min")
 | 
| 
 | 
   455                 columns.append(rxn + "_max")
 | 
| 
 | 
   456             df_FVA= pd.DataFrame(columns = columns)
 | 
| 
 | 
   457             for index_rxn, row in fva.iterrows():
 | 
| 
 | 
   458                 df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"]
 | 
| 
 | 
   459                 df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"]
 | 
| 
 | 
   460             df_FVA = df_FVA.reset_index(drop=True)
 | 
| 
 | 
   461             df_FVA.index = [model_name]
 | 
| 
 | 
   462             df_FVA = df_FVA.astype(float).round(6)
 | 
| 
 | 
   463         elif(output_type == "sensitivity"):
 | 
| 
 | 
   464             model.objective = "Biomass"
 | 
| 
 | 
   465             solution_original = model.optimize().objective_value
 | 
| 
 | 
   466             reactions = model.reactions
 | 
| 
 | 
   467             single = cobra.flux_analysis.single_reaction_deletion(model)
 | 
| 
 | 
   468             newRow = []
 | 
| 
 | 
   469             df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name])
 | 
| 
 | 
   470             for rxn in reactions:
 | 
| 
 | 
   471                 newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original)
 | 
| 
 | 
   472             df_sensitivity.loc[model_name] = newRow
 | 
| 
 | 
   473             df_sensitivity = df_sensitivity.astype(float).round(6)
 | 
| 
 | 
   474     return df_pFBA, df_FVA, df_sensitivity
 | 
| 
 | 
   475 
 | 
| 
 | 
   476 ############################# main ###########################################
 | 
| 
461
 | 
   477 def main(args: List[str] = None) -> None:
 | 
| 
410
 | 
   478     """
 | 
| 
456
 | 
   479     Initialize and run sampling/analysis based on the frontend input arguments.
 | 
| 
410
 | 
   480 
 | 
| 
 | 
   481     Returns:
 | 
| 
 | 
   482         None
 | 
| 
 | 
   483     """
 | 
| 
 | 
   484 
 | 
| 
419
 | 
   485     num_processors = max(1, cpu_count() - 1)
 | 
| 
410
 | 
   486 
 | 
| 
 | 
   487     global ARGS
 | 
| 
 | 
   488     ARGS = process_args(args)
 | 
| 
 | 
   489 
 | 
| 
 | 
   490     if not os.path.exists(ARGS.output_path):
 | 
| 
 | 
   491         os.makedirs(ARGS.output_path)
 | 
| 
419
 | 
   492 
 | 
| 
 | 
   493     # --- Normalize inputs (the tool may pass comma-separated --input and either --name or --names) ---
 | 
| 
421
 | 
   494     ARGS.input_files = ARGS.input.split(",") if ARGS.input else []
 | 
| 
419
 | 
   495     ARGS.file_names = ARGS.name.split(",")
 | 
| 
 | 
   496     # output types (required) -> list
 | 
| 
421
 | 
   497     ARGS.output_types = ARGS.output_type.split(",") if ARGS.output_type else []
 | 
| 
419
 | 
   498     # optional analysis output types -> list or empty
 | 
| 
421
 | 
   499     ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") if ARGS.output_type_analysis else []
 | 
| 
419
 | 
   500 
 | 
| 
461
 | 
   501     # Determine if sampling should be performed
 | 
| 
473
 | 
   502     if ARGS.sampling_enabled == "true":
 | 
| 
469
 | 
   503         perform_sampling = True
 | 
| 
461
 | 
   504 
 | 
| 
421
 | 
   505     print("=== INPUT FILES ===")
 | 
| 
422
 | 
   506     print(f"{ARGS.input_files}")
 | 
| 
 | 
   507     print(f"{ARGS.file_names}")
 | 
| 
 | 
   508     print(f"{ARGS.output_type}")
 | 
| 
 | 
   509     print(f"{ARGS.output_types}")
 | 
| 
 | 
   510     print(f"{ARGS.output_type_analysis}")
 | 
| 
461
 | 
   511     print(f"Sampling enabled: {perform_sampling} (n_samples: {ARGS.n_samples})")
 | 
| 
410
 | 
   512     
 | 
| 
419
 | 
   513     if ARGS.model_and_bounds == "True":
 | 
| 
 | 
   514         # MODE 1: Model + bounds (separate files)
 | 
| 
 | 
   515         print("=== MODE 1: Model + Bounds (separate files) ===")
 | 
| 
 | 
   516         
 | 
| 
 | 
   517         # Load base model
 | 
| 
 | 
   518         if not ARGS.model_upload:
 | 
| 
 | 
   519             sys.exit("Error: model_upload is required for Mode 1")
 | 
| 
410
 | 
   520 
 | 
| 
419
 | 
   521         base_model = model_utils.build_cobra_model_from_csv(ARGS.model_upload)
 | 
| 
410
 | 
   522 
 | 
| 
419
 | 
   523         validation = model_utils.validate_model(base_model)
 | 
| 
 | 
   524 
 | 
| 
456
 | 
   525         print("\n=== MODEL VALIDATION ===")
 | 
| 
419
 | 
   526         for key, value in validation.items():
 | 
| 
 | 
   527             print(f"{key}: {value}")
 | 
| 
 | 
   528 
 | 
| 
456
 | 
   529         # Set solver verbosity to 1 to see warning and error messages only.
 | 
| 
419
 | 
   530         base_model.solver.configuration.verbosity = 1
 | 
| 
410
 | 
   531 
 | 
| 
456
 | 
   532         # Process each bounds file with the base model
 | 
| 
419
 | 
   533         results = Parallel(n_jobs=num_processors)(
 | 
| 
 | 
   534             delayed(model_sampler_with_bounds)(base_model, bounds_file, cell_name) 
 | 
| 
 | 
   535             for bounds_file, cell_name in zip(ARGS.input_files, ARGS.file_names)
 | 
| 
 | 
   536         )
 | 
| 
410
 | 
   537 
 | 
| 
419
 | 
   538     else:
 | 
| 
 | 
   539         # MODE 2: Multiple complete models
 | 
| 
 | 
   540         print("=== MODE 2: Multiple complete models ===")
 | 
| 
 | 
   541         
 | 
| 
 | 
   542         # Process each complete model file
 | 
| 
 | 
   543         results = Parallel(n_jobs=num_processors)(
 | 
| 
 | 
   544             delayed(perform_sampling_and_analysis)(model_utils.build_cobra_model_from_csv(model_file), cell_name) 
 | 
| 
 | 
   545             for model_file, cell_name in zip(ARGS.input_files, ARGS.file_names)
 | 
| 
 | 
   546         )
 | 
| 
410
 | 
   547 
 | 
| 
461
 | 
   548     # Handle sampling outputs (only if sampling was performed)
 | 
| 
 | 
   549     if perform_sampling:
 | 
| 
 | 
   550         print("=== PROCESSING SAMPLING RESULTS ===")
 | 
| 
 | 
   551         
 | 
| 
 | 
   552         all_mean = pd.concat([result[0] for result in results], ignore_index=False)
 | 
| 
 | 
   553         all_median = pd.concat([result[1] for result in results], ignore_index=False)
 | 
| 
 | 
   554         all_quantiles = pd.concat([result[2] for result in results], ignore_index=False)
 | 
| 
410
 | 
   555 
 | 
| 
461
 | 
   556         if "mean" in ARGS.output_types:
 | 
| 
 | 
   557             all_mean = all_mean.fillna(0.0)
 | 
| 
 | 
   558             all_mean = all_mean.sort_index()
 | 
| 
 | 
   559             write_to_file(all_mean.T, "mean", True)
 | 
| 
410
 | 
   560 
 | 
| 
461
 | 
   561         if "median" in ARGS.output_types:
 | 
| 
 | 
   562             all_median = all_median.fillna(0.0)
 | 
| 
 | 
   563             all_median = all_median.sort_index()
 | 
| 
 | 
   564             write_to_file(all_median.T, "median", True)
 | 
| 
 | 
   565         
 | 
| 
 | 
   566         if "quantiles" in ARGS.output_types:
 | 
| 
 | 
   567             all_quantiles = all_quantiles.fillna(0.0)
 | 
| 
 | 
   568             all_quantiles = all_quantiles.sort_index()
 | 
| 
 | 
   569             write_to_file(all_quantiles.T, "quantiles", True)
 | 
| 
 | 
   570     else:
 | 
| 
469
 | 
   571         print("=== SAMPLING SKIPPED (n_samples = 0 or sampling disabled) ===")
 | 
| 
461
 | 
   572 
 | 
| 
 | 
   573     # Handle optimization analysis outputs (always available)
 | 
| 
 | 
   574     print("=== PROCESSING OPTIMIZATION RESULTS ===")
 | 
| 
410
 | 
   575     
 | 
| 
461
 | 
   576     # Determine the starting index for optimization results
 | 
| 
 | 
   577     # If sampling was performed, optimization results start at index 3
 | 
| 
 | 
   578     # If no sampling, optimization results start at index 0
 | 
| 
 | 
   579     index_result = 3 if perform_sampling else 0
 | 
| 
 | 
   580     
 | 
| 
 | 
   581     if "pFBA" in ARGS.output_type_analysis:
 | 
| 
410
 | 
   582         all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False)
 | 
| 
 | 
   583         all_pFBA = all_pFBA.sort_index()
 | 
| 
 | 
   584         write_to_file(all_pFBA.T, "pFBA", True)
 | 
| 
461
 | 
   585         index_result += 1
 | 
| 
 | 
   586         
 | 
| 
 | 
   587     if "FVA" in ARGS.output_type_analysis:
 | 
| 
 | 
   588         all_FVA = pd.concat([result[index_result] for result in results], ignore_index=False)
 | 
| 
410
 | 
   589         all_FVA = all_FVA.sort_index()
 | 
| 
 | 
   590         write_to_file(all_FVA.T, "FVA", True)
 | 
| 
461
 | 
   591         index_result += 1
 | 
| 
 | 
   592         
 | 
| 
 | 
   593     if "sensitivity" in ARGS.output_type_analysis:
 | 
| 
410
 | 
   594         all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False)
 | 
| 
 | 
   595         all_sensitivity = all_sensitivity.sort_index()
 | 
| 
 | 
   596         write_to_file(all_sensitivity.T, "sensitivity", True)
 | 
| 
 | 
   597 
 | 
| 
456
 | 
   598     return
 | 
| 
410
 | 
   599         
 | 
| 
 | 
   600 ##############################################################################
 | 
| 
 | 
   601 if __name__ == "__main__":
 | 
| 
 | 
   602     main() |