| 93 | 1 import os | 
|  | 2 import csv | 
|  | 3 import cobra | 
|  | 4 import pickle | 
|  | 5 import argparse | 
|  | 6 import pandas as pd | 
|  | 7 import utils.general_utils as utils | 
|  | 8 import utils.rule_parsing  as rulesUtils | 
| 147 | 9 from typing import Optional, Tuple, Union, List, Dict | 
| 93 | 10 import utils.reaction_parsing as reactionUtils | 
| 370 | 11 import openpyxl | 
| 93 | 12 | 
|  | 13 ARGS : argparse.Namespace | 
| 343 | 14 def process_args(args: List[str] = None) -> argparse.Namespace: | 
|  | 15     """ | 
|  | 16     Parse command-line arguments for CustomDataGenerator. | 
| 93 | 17     """ | 
| 343 | 18 | 
|  | 19     parser = argparse.ArgumentParser( | 
|  | 20         usage="%(prog)s [options]", | 
|  | 21         description="Generate custom data from a given model" | 
|  | 22     ) | 
| 93 | 23 | 
| 343 | 24     parser.add_argument("--out_log", type=str, required=True, | 
|  | 25                         help="Output log file") | 
| 93 | 26 | 
| 343 | 27     parser.add_argument("--model", type=str, | 
|  | 28                         help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)") | 
|  | 29     parser.add_argument("--input", type=str, | 
|  | 30                         help="Custom model file (JSON or XML)") | 
|  | 31     parser.add_argument("--name", type=str, required=True, | 
|  | 32                         help="Model name (default or custom)") | 
| 93 | 33 | 
| 343 | 34     parser.add_argument("--medium_selector", type=str, required=True, | 
|  | 35                         help="Medium selection option (default/custom)") | 
|  | 36     parser.add_argument("--medium", type=str, | 
|  | 37                         help="Custom medium file if medium_selector=Custom") | 
|  | 38 | 
|  | 39     parser.add_argument("--output_format", type=str, choices=["tabular", "xlsx"], required=True, | 
|  | 40                         help="Output format: CSV (tabular) or Excel (xlsx)") | 
|  | 41 | 
| 375 | 42     parser.add_argument("--out_tabular", type=str, | 
|  | 43                         help="Output file for the merged dataset (CSV or XLSX)") | 
|  | 44 | 
|  | 45     parser.add_argument("--out_xlsx", type=str, | 
| 365 | 46                         help="Output file for the merged dataset (CSV or XLSX)") | 
| 343 | 47 | 
| 353 | 48     parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__), | 
| 363 | 49                         help="Tool directory (passed from Galaxy as $__tool_directory__)") | 
| 353 | 50 | 
| 93 | 51 | 
| 343 | 52     return parser.parse_args(args) | 
| 93 | 53 | 
|  | 54 ################################- INPUT DATA LOADING -################################ | 
|  | 55 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: | 
|  | 56     """ | 
|  | 57     Loads a custom model from a file, either in JSON or XML format. | 
|  | 58 | 
|  | 59     Args: | 
|  | 60         file_path : The path to the file containing the custom model. | 
|  | 61         ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour. | 
|  | 62 | 
|  | 63     Raises: | 
|  | 64         DataErr : if the file is in an invalid format or cannot be opened for whatever reason. | 
|  | 65 | 
|  | 66     Returns: | 
|  | 67         cobra.Model : the model, if successfully opened. | 
|  | 68     """ | 
|  | 69     ext = ext if ext else file_path.ext | 
|  | 70     try: | 
|  | 71         if ext is utils.FileFormat.XML: | 
|  | 72             return cobra.io.read_sbml_model(file_path.show()) | 
|  | 73 | 
|  | 74         if ext is utils.FileFormat.JSON: | 
|  | 75             return cobra.io.load_json_model(file_path.show()) | 
|  | 76 | 
|  | 77     except Exception as e: raise utils.DataErr(file_path, e.__str__()) | 
|  | 78     raise utils.DataErr(file_path, | 
|  | 79         f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML") | 
|  | 80 | 
|  | 81 ################################- DATA GENERATION -################################ | 
|  | 82 ReactionId = str | 
|  | 83 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]: | 
|  | 84     """ | 
|  | 85     Generates a dictionary mapping reaction ids to rules from the model. | 
|  | 86 | 
|  | 87     Args: | 
|  | 88         model : the model to derive data from. | 
|  | 89         asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings. | 
|  | 90 | 
|  | 91     Returns: | 
|  | 92         Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules. | 
|  | 93         Dict[ReactionId, str] : the generated dictionary of raw rules. | 
|  | 94     """ | 
|  | 95     # Is the below approach convoluted? yes | 
|  | 96     # Ok but is it inefficient? probably | 
|  | 97     # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane) | 
|  | 98     _ruleGetter   =  lambda reaction : reaction.gene_reaction_rule | 
|  | 99     ruleExtractor = (lambda reaction : | 
|  | 100         rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter | 
|  | 101 | 
|  | 102     return { | 
|  | 103         reaction.id : ruleExtractor(reaction) | 
|  | 104         for reaction in model.reactions | 
|  | 105         if reaction.gene_reaction_rule } | 
|  | 106 | 
|  | 107 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]: | 
|  | 108     """ | 
|  | 109     Generates a dictionary mapping reaction ids to reaction formulas from the model. | 
|  | 110 | 
|  | 111     Args: | 
|  | 112         model : the model to derive data from. | 
|  | 113         asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are. | 
|  | 114 | 
|  | 115     Returns: | 
|  | 116         Dict[ReactionId, str] : the generated dictionary. | 
|  | 117     """ | 
|  | 118 | 
|  | 119     unparsedReactions = { | 
|  | 120         reaction.id : reaction.reaction | 
|  | 121         for reaction in model.reactions | 
|  | 122         if reaction.reaction | 
|  | 123     } | 
|  | 124 | 
|  | 125     if not asParsed: return unparsedReactions | 
|  | 126 | 
|  | 127     return reactionUtils.create_reaction_dict(unparsedReactions) | 
|  | 128 | 
|  | 129 def get_medium(model:cobra.Model) -> pd.DataFrame: | 
|  | 130     trueMedium=[] | 
|  | 131     for r in model.reactions: | 
|  | 132         positiveCoeff=0 | 
|  | 133         for m in r.metabolites: | 
|  | 134             if r.get_coefficient(m.id)>0: | 
|  | 135                 positiveCoeff=1; | 
|  | 136         if (positiveCoeff==0 and r.lower_bound<0): | 
|  | 137             trueMedium.append(r.id) | 
|  | 138 | 
|  | 139     df_medium = pd.DataFrame() | 
|  | 140     df_medium["reaction"] = trueMedium | 
|  | 141     return df_medium | 
|  | 142 | 
|  | 143 def generate_bounds(model:cobra.Model) -> pd.DataFrame: | 
|  | 144 | 
|  | 145     rxns = [] | 
|  | 146     for reaction in model.reactions: | 
|  | 147         rxns.append(reaction.id) | 
|  | 148 | 
|  | 149     bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns) | 
|  | 150 | 
|  | 151     for reaction in model.reactions: | 
|  | 152         bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] | 
|  | 153     return bounds | 
|  | 154 | 
|  | 155 | 
|  | 156 ###############################- FILE SAVING -################################ | 
|  | 157 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: | 
|  | 158     """ | 
|  | 159     Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath. | 
|  | 160 | 
|  | 161     Args: | 
|  | 162         data : the data to be written to the file. | 
|  | 163         file_path : the path to the .csv file. | 
|  | 164         fieldNames : the names of the fields (columns) in the .csv file. | 
|  | 165 | 
|  | 166     Returns: | 
|  | 167         None | 
|  | 168     """ | 
|  | 169     with open(file_path.show(), 'w', newline='') as csvfile: | 
|  | 170         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | 
|  | 171         writer.writeheader() | 
|  | 172 | 
|  | 173         for key, value in data.items(): | 
|  | 174             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | 
|  | 175 | 
|  | 176 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None: | 
|  | 177     """ | 
|  | 178     Saves any dictionary-shaped data in a .csv file created at the given file_path as string. | 
|  | 179 | 
|  | 180     Args: | 
|  | 181         data : the data to be written to the file. | 
|  | 182         file_path : the path to the .csv file. | 
|  | 183         fieldNames : the names of the fields (columns) in the .csv file. | 
|  | 184 | 
|  | 185     Returns: | 
|  | 186         None | 
|  | 187     """ | 
|  | 188     with open(file_path, 'w', newline='') as csvfile: | 
|  | 189         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | 
|  | 190         writer.writeheader() | 
|  | 191 | 
|  | 192         for key, value in data.items(): | 
|  | 193             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | 
|  | 194 | 
| 377 | 195 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None: | 
|  | 196     try: | 
|  | 197         os.makedirs(os.path.dirname(path) or ".", exist_ok=True) | 
|  | 198         df.to_csv(path, sep="\t", index=False) | 
|  | 199     except Exception as e: | 
|  | 200         raise utils.DataErr(path, f"failed writing tabular output: {e}") | 
|  | 201 | 
|  | 202 def save_as_xlsx_df(df: pd.DataFrame, path: str) -> None: | 
|  | 203     try: | 
|  | 204         if not path.lower().endswith(".xlsx"): | 
|  | 205             path += ".xlsx" | 
|  | 206         os.makedirs(os.path.dirname(path) or ".", exist_ok=True) | 
|  | 207         df.to_excel(path, index=False) | 
|  | 208     except Exception as e: | 
|  | 209         raise utils.DataErr(path, f"failed writing xlsx output: {e}") | 
|  | 210 | 
| 93 | 211 ###############################- ENTRY POINT -################################ | 
| 147 | 212 def main(args:List[str] = None) -> None: | 
| 93 | 213     """ | 
|  | 214     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 215 | 
|  | 216     Returns: | 
|  | 217         None | 
|  | 218     """ | 
|  | 219     # get args from frontend (related xml) | 
|  | 220     global ARGS | 
| 147 | 221     ARGS = process_args(args) | 
| 93 | 222 | 
| 343 | 223 | 
| 350 | 224     if ARGS.input: | 
| 343 | 225         # load custom model | 
|  | 226         model = load_custom_model( | 
|  | 227             utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext) | 
|  | 228     else: | 
|  | 229         # load built-in model | 
| 93 | 230 | 
| 343 | 231         try: | 
|  | 232             model_enum = utils.Model[ARGS.model]  # e.g., Model['ENGRO2'] | 
|  | 233         except KeyError: | 
|  | 234             raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model) | 
|  | 235 | 
|  | 236         # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models) | 
|  | 237         try: | 
| 353 | 238             model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir) | 
| 343 | 239         except Exception as e: | 
|  | 240             # Wrap/normalize load errors as DataErr for consistency | 
|  | 241             raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}") | 
|  | 242 | 
|  | 243     # Determine final model name: explicit --name overrides, otherwise use the model id | 
|  | 244     model_name = ARGS.name if ARGS.name else ARGS.model | 
| 93 | 245 | 
|  | 246     # generate data | 
|  | 247     rules = generate_rules(model, asParsed = False) | 
|  | 248     reactions = generate_reactions(model, asParsed = False) | 
|  | 249     bounds = generate_bounds(model) | 
|  | 250     medium = get_medium(model) | 
|  | 251 | 
| 343 | 252     df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"]) | 
|  | 253     df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"]) | 
|  | 254 | 
|  | 255     df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) | 
|  | 256     df_medium = medium.rename(columns = {"reaction": "ReactionID"}) | 
|  | 257     df_medium["InMedium"] = True # flag per indicare la presenza nel medium | 
|  | 258 | 
|  | 259     merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer") | 
|  | 260     merged = merged.merge(df_bounds, on = "ReactionID", how = "outer") | 
|  | 261 | 
|  | 262     merged = merged.merge(df_medium, on = "ReactionID", how = "left") | 
|  | 263 | 
|  | 264     merged["InMedium"] = merged["InMedium"].fillna(False) | 
|  | 265 | 
|  | 266     merged = merged.sort_values(by = "InMedium", ascending = False) | 
|  | 267 | 
| 359 | 268     #out_file = os.path.join(ARGS.output_path, f"{os.path.basename(ARGS.name).split('.')[0]}_custom_data") | 
| 343 | 269 | 
|  | 270     #merged.to_csv(out_file, sep = '\t', index = False) | 
|  | 271 | 
|  | 272 | 
|  | 273     #### | 
|  | 274 | 
| 377 | 275     # write only the requested output | 
| 343 | 276     if ARGS.output_format == "xlsx": | 
| 375 | 277         if not ARGS.out_xlsx: | 
|  | 278             raise utils.ArgsErr("out_xlsx", "output path (--out_xlsx) is required when output_format == xlsx", ARGS.out_xlsx) | 
| 377 | 279         save_as_xlsx_df(merged, ARGS.out_xlsx) | 
|  | 280         expected = ARGS.out_xlsx | 
| 343 | 281     else: | 
| 375 | 282         if not ARGS.out_tabular: | 
|  | 283             raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular) | 
| 377 | 284         save_as_tabular_df(merged, ARGS.out_tabular) | 
|  | 285         expected = ARGS.out_tabular | 
|  | 286 | 
|  | 287     # verify output exists and non-empty | 
|  | 288     if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0: | 
|  | 289         raise utils.DataErr(expected, "Output non creato o vuoto") | 
| 343 | 290 | 
| 367 | 291 print("CustomDataGenerator: completed successfully") | 
| 93 | 292 | 
|  | 293 if __name__ == '__main__': | 
|  | 294     main() |