| 4 | 1 import os | 
|  | 2 import csv | 
|  | 3 import cobra | 
|  | 4 import pickle | 
|  | 5 import argparse | 
|  | 6 import pandas as pd | 
|  | 7 import utils.general_utils as utils | 
|  | 8 import utils.rule_parsing  as rulesUtils | 
|  | 9 from typing import Optional, Tuple, Union, Dict | 
|  | 10 import utils.reaction_parsing as reactionUtils | 
|  | 11 | 
|  | 12 ARGS : argparse.Namespace | 
|  | 13 def process_args() -> argparse.Namespace: | 
|  | 14     """ | 
|  | 15     Interfaces the script of a module with its frontend, making the user's choices for | 
|  | 16     various parameters available as values in code. | 
|  | 17 | 
|  | 18     Args: | 
|  | 19         args : Always obtained (in file) from sys.argv | 
|  | 20 | 
|  | 21     Returns: | 
|  | 22         Namespace : An object containing the parsed arguments | 
|  | 23     """ | 
|  | 24     parser = argparse.ArgumentParser( | 
|  | 25         usage = "%(prog)s [options]", | 
|  | 26         description = "generate custom data from a given model") | 
|  | 27 | 
|  | 28     parser.add_argument("-ol", "--out_log", type = str, required = True, help = "Output log") | 
| 23 | 29 | 
|  | 30     parser.add_argument("-orules", "--out_rules", type = str, required = True, help = "Output rules") | 
|  | 31     parser.add_argument("-orxns", "--out_reactions", type = str, required = True, help = "Output reactions") | 
|  | 32     parser.add_argument("-omedium", "--out_medium", type = str, required = True, help = "Output medium") | 
|  | 33     parser.add_argument("-obnds", "--out_bounds", type = str, required = True, help = "Output bounds") | 
|  | 34 | 
| 4 | 35     parser.add_argument("-id", "--input",   type = str, required = True, help = "Input model") | 
|  | 36     parser.add_argument("-mn", "--name",    type = str, required = True, help = "Input model name") | 
|  | 37     # ^ I need this because galaxy converts my files into .dat but I need to know what extension they were in | 
|  | 38 | 
|  | 39     argsNamespace = parser.parse_args() | 
|  | 40     argsNamespace.out_dir = "result" | 
|  | 41     # ^ can't get this one to work from xml, there doesn't seem to be a way to get the directory attribute from the collection | 
|  | 42 | 
|  | 43     return argsNamespace | 
|  | 44 | 
|  | 45 ################################- INPUT DATA LOADING -################################ | 
|  | 46 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: | 
|  | 47     """ | 
|  | 48     Loads a custom model from a file, either in JSON or XML format. | 
|  | 49 | 
|  | 50     Args: | 
|  | 51         file_path : The path to the file containing the custom model. | 
|  | 52         ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour. | 
|  | 53 | 
|  | 54     Raises: | 
|  | 55         DataErr : if the file is in an invalid format or cannot be opened for whatever reason. | 
|  | 56 | 
|  | 57     Returns: | 
|  | 58         cobra.Model : the model, if successfully opened. | 
|  | 59     """ | 
|  | 60     ext = ext if ext else file_path.ext | 
|  | 61     try: | 
|  | 62         if ext is utils.FileFormat.XML: | 
|  | 63             return cobra.io.read_sbml_model(file_path.show()) | 
|  | 64 | 
|  | 65         if ext is utils.FileFormat.JSON: | 
|  | 66             return cobra.io.load_json_model(file_path.show()) | 
|  | 67 | 
|  | 68     except Exception as e: raise utils.DataErr(file_path, e.__str__()) | 
|  | 69     raise utils.DataErr(file_path, | 
|  | 70         f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML") | 
|  | 71 | 
|  | 72 ################################- DATA GENERATION -################################ | 
|  | 73 ReactionId = str | 
|  | 74 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]: | 
|  | 75     """ | 
|  | 76     Generates a dictionary mapping reaction ids to rules from the model. | 
|  | 77 | 
|  | 78     Args: | 
|  | 79         model : the model to derive data from. | 
|  | 80         asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings. | 
|  | 81 | 
|  | 82     Returns: | 
|  | 83         Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules. | 
|  | 84         Dict[ReactionId, str] : the generated dictionary of raw rules. | 
|  | 85     """ | 
|  | 86     # Is the below approach convoluted? yes | 
|  | 87     # Ok but is it inefficient? probably | 
|  | 88     # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane) | 
|  | 89     _ruleGetter   =  lambda reaction : reaction.gene_reaction_rule | 
|  | 90     ruleExtractor = (lambda reaction : | 
|  | 91         rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter | 
|  | 92 | 
|  | 93     return { | 
|  | 94         reaction.id : ruleExtractor(reaction) | 
|  | 95         for reaction in model.reactions | 
|  | 96         if reaction.gene_reaction_rule } | 
|  | 97 | 
|  | 98 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]: | 
|  | 99     """ | 
|  | 100     Generates a dictionary mapping reaction ids to reaction formulas from the model. | 
|  | 101 | 
|  | 102     Args: | 
|  | 103         model : the model to derive data from. | 
|  | 104         asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are. | 
|  | 105 | 
|  | 106     Returns: | 
|  | 107         Dict[ReactionId, str] : the generated dictionary. | 
|  | 108     """ | 
|  | 109 | 
|  | 110     unparsedReactions = { | 
|  | 111         reaction.id : reaction.reaction | 
|  | 112         for reaction in model.reactions | 
|  | 113         if reaction.reaction | 
|  | 114     } | 
|  | 115 | 
|  | 116     if not asParsed: return unparsedReactions | 
|  | 117 | 
|  | 118     return reactionUtils.create_reaction_dict(unparsedReactions) | 
|  | 119 | 
|  | 120 def get_medium(model:cobra.Model) -> pd.DataFrame: | 
|  | 121     trueMedium=[] | 
|  | 122     for r in model.reactions: | 
|  | 123         positiveCoeff=0 | 
|  | 124         for m in r.metabolites: | 
|  | 125             if r.get_coefficient(m.id)>0: | 
|  | 126                 positiveCoeff=1; | 
|  | 127         if (positiveCoeff==0 and r.lower_bound<0): | 
|  | 128             trueMedium.append(r.id) | 
|  | 129 | 
|  | 130     df_medium = pd.DataFrame() | 
|  | 131     df_medium["reaction"] = trueMedium | 
|  | 132     return df_medium | 
|  | 133 | 
|  | 134 def generate_bounds(model:cobra.Model) -> pd.DataFrame: | 
|  | 135 | 
|  | 136     rxns = [] | 
|  | 137     for reaction in model.reactions: | 
|  | 138         rxns.append(reaction.id) | 
|  | 139 | 
|  | 140     bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns) | 
|  | 141 | 
|  | 142     for reaction in model.reactions: | 
|  | 143         bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] | 
|  | 144     return bounds | 
|  | 145 | 
|  | 146 | 
|  | 147 ###############################- FILE SAVING -################################ | 
| 26 | 148 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: | 
| 4 | 149     """ | 
| 28 | 150     Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath. | 
| 4 | 151 | 
|  | 152     Args: | 
|  | 153         data : the data to be written to the file. | 
|  | 154         file_path : the path to the .csv file. | 
|  | 155         fieldNames : the names of the fields (columns) in the .csv file. | 
|  | 156 | 
|  | 157     Returns: | 
|  | 158         None | 
|  | 159     """ | 
|  | 160     with open(file_path.show(), 'w', newline='') as csvfile: | 
| 23 | 161         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | 
| 4 | 162         writer.writeheader() | 
|  | 163 | 
|  | 164         for key, value in data.items(): | 
|  | 165             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | 
|  | 166 | 
| 26 | 167 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None: | 
|  | 168     """ | 
| 28 | 169     Saves any dictionary-shaped data in a .csv file created at the given file_path as string. | 
| 26 | 170 | 
|  | 171     Args: | 
|  | 172         data : the data to be written to the file. | 
|  | 173         file_path : the path to the .csv file. | 
|  | 174         fieldNames : the names of the fields (columns) in the .csv file. | 
|  | 175 | 
|  | 176     Returns: | 
|  | 177         None | 
|  | 178     """ | 
|  | 179     with open(file_path, 'w', newline='') as csvfile: | 
|  | 180         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | 
|  | 181         writer.writeheader() | 
|  | 182 | 
|  | 183         for key, value in data.items(): | 
|  | 184             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | 
|  | 185 | 
| 4 | 186 ###############################- ENTRY POINT -################################ | 
|  | 187 def main() -> None: | 
|  | 188     """ | 
|  | 189     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 190 | 
|  | 191     Returns: | 
|  | 192         None | 
|  | 193     """ | 
|  | 194     # get args from frontend (related xml) | 
|  | 195     global ARGS | 
|  | 196     ARGS = process_args() | 
|  | 197 | 
|  | 198     # this is the worst thing I've seen so far, congrats to the former MaREA devs for suggesting this! | 
|  | 199     if os.path.isdir(ARGS.out_dir) == False: os.makedirs(ARGS.out_dir) | 
|  | 200 | 
|  | 201     # load custom model | 
|  | 202     model = load_custom_model( | 
|  | 203         utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext) | 
| 23 | 204 | 
| 28 | 205     # generate data | 
| 23 | 206     rules = generate_rules(model, asParsed = False) | 
|  | 207     reactions = generate_reactions(model, asParsed = False) | 
|  | 208     bounds = generate_bounds(model) | 
|  | 209     medium = get_medium(model) | 
| 4 | 210 | 
| 28 | 211     # save files out of collection: path coming from xml | 
| 25 | 212     save_as_csv(rules, ARGS.out_rules, ("ReactionID", "Rule")) | 
|  | 213     save_as_csv(reactions, ARGS.out_reactions, ("ReactionID", "Reaction")) | 
|  | 214     bounds.to_csv(ARGS.out_bounds, sep = '\t') | 
|  | 215     medium.to_csv(ARGS.out_medium, sep = '\t') | 
| 4 | 216 | 
|  | 217 if __name__ == '__main__': | 
|  | 218     main() |