| 4 | 1 import os | 
|  | 2 import csv | 
|  | 3 import cobra | 
|  | 4 import pickle | 
|  | 5 import argparse | 
|  | 6 import pandas as pd | 
|  | 7 import utils.general_utils as utils | 
|  | 8 import utils.rule_parsing  as rulesUtils | 
|  | 9 from typing import Optional, Tuple, Union, Dict | 
|  | 10 import utils.reaction_parsing as reactionUtils | 
|  | 11 | 
|  | 12 ARGS : argparse.Namespace | 
|  | 13 def process_args() -> argparse.Namespace: | 
|  | 14     """ | 
|  | 15     Interfaces the script of a module with its frontend, making the user's choices for | 
|  | 16     various parameters available as values in code. | 
|  | 17 | 
|  | 18     Args: | 
|  | 19         args : Always obtained (in file) from sys.argv | 
|  | 20 | 
|  | 21     Returns: | 
|  | 22         Namespace : An object containing the parsed arguments | 
|  | 23     """ | 
|  | 24     parser = argparse.ArgumentParser( | 
|  | 25         usage = "%(prog)s [options]", | 
|  | 26         description = "generate custom data from a given model") | 
|  | 27 | 
|  | 28     parser.add_argument("-ol", "--out_log", type = str, required = True, help = "Output log") | 
|  | 29     parser.add_argument("-id", "--input",   type = str, required = True, help = "Input model") | 
|  | 30     parser.add_argument("-mn", "--name",    type = str, required = True, help = "Input model name") | 
|  | 31     # ^ I need this because galaxy converts my files into .dat but I need to know what extension they were in | 
|  | 32 | 
|  | 33     parser.add_argument( | 
|  | 34         "-of", "--output_format", | 
|  | 35         # vvv I have to use .fromExt because enums in python are the plague and have been implemented by a chimpanzee. | 
|  | 36         type = utils.FileFormat.fromExt, default = utils.FileFormat.PICKLE, | 
|  | 37         choices = [utils.FileFormat.CSV, utils.FileFormat.PICKLE], | 
|  | 38         # ^^^ Not all variants are valid here, otherwise list(utils.FileFormat) would be best. | 
|  | 39         required = True, help = "Extension of all output files") | 
|  | 40 | 
|  | 41     argsNamespace = parser.parse_args() | 
|  | 42     argsNamespace.out_dir = "result" | 
|  | 43     # ^ can't get this one to work from xml, there doesn't seem to be a way to get the directory attribute from the collection | 
|  | 44 | 
|  | 45     return argsNamespace | 
|  | 46 | 
|  | 47 ################################- INPUT DATA LOADING -################################ | 
|  | 48 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: | 
|  | 49     """ | 
|  | 50     Loads a custom model from a file, either in JSON or XML format. | 
|  | 51 | 
|  | 52     Args: | 
|  | 53         file_path : The path to the file containing the custom model. | 
|  | 54         ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour. | 
|  | 55 | 
|  | 56     Raises: | 
|  | 57         DataErr : if the file is in an invalid format or cannot be opened for whatever reason. | 
|  | 58 | 
|  | 59     Returns: | 
|  | 60         cobra.Model : the model, if successfully opened. | 
|  | 61     """ | 
|  | 62     ext = ext if ext else file_path.ext | 
|  | 63     try: | 
|  | 64         if ext is utils.FileFormat.XML: | 
|  | 65             return cobra.io.read_sbml_model(file_path.show()) | 
|  | 66 | 
|  | 67         if ext is utils.FileFormat.JSON: | 
|  | 68             return cobra.io.load_json_model(file_path.show()) | 
|  | 69 | 
|  | 70     except Exception as e: raise utils.DataErr(file_path, e.__str__()) | 
|  | 71     raise utils.DataErr(file_path, | 
|  | 72         f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML") | 
|  | 73 | 
|  | 74 ################################- DATA GENERATION -################################ | 
|  | 75 ReactionId = str | 
|  | 76 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]: | 
|  | 77     """ | 
|  | 78     Generates a dictionary mapping reaction ids to rules from the model. | 
|  | 79 | 
|  | 80     Args: | 
|  | 81         model : the model to derive data from. | 
|  | 82         asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings. | 
|  | 83 | 
|  | 84     Returns: | 
|  | 85         Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules. | 
|  | 86         Dict[ReactionId, str] : the generated dictionary of raw rules. | 
|  | 87     """ | 
|  | 88     # Is the below approach convoluted? yes | 
|  | 89     # Ok but is it inefficient? probably | 
|  | 90     # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane) | 
|  | 91     _ruleGetter   =  lambda reaction : reaction.gene_reaction_rule | 
|  | 92     ruleExtractor = (lambda reaction : | 
|  | 93         rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter | 
|  | 94 | 
|  | 95     return { | 
|  | 96         reaction.id : ruleExtractor(reaction) | 
|  | 97         for reaction in model.reactions | 
|  | 98         if reaction.gene_reaction_rule } | 
|  | 99 | 
|  | 100 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]: | 
|  | 101     """ | 
|  | 102     Generates a dictionary mapping reaction ids to reaction formulas from the model. | 
|  | 103 | 
|  | 104     Args: | 
|  | 105         model : the model to derive data from. | 
|  | 106         asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are. | 
|  | 107 | 
|  | 108     Returns: | 
|  | 109         Dict[ReactionId, str] : the generated dictionary. | 
|  | 110     """ | 
|  | 111 | 
|  | 112     unparsedReactions = { | 
|  | 113         reaction.id : reaction.reaction | 
|  | 114         for reaction in model.reactions | 
|  | 115         if reaction.reaction | 
|  | 116     } | 
|  | 117 | 
|  | 118     if not asParsed: return unparsedReactions | 
|  | 119 | 
|  | 120     return reactionUtils.create_reaction_dict(unparsedReactions) | 
|  | 121 | 
|  | 122 def get_medium(model:cobra.Model) -> pd.DataFrame: | 
|  | 123     trueMedium=[] | 
|  | 124     for r in model.reactions: | 
|  | 125         positiveCoeff=0 | 
|  | 126         for m in r.metabolites: | 
|  | 127             if r.get_coefficient(m.id)>0: | 
|  | 128                 positiveCoeff=1; | 
|  | 129         if (positiveCoeff==0 and r.lower_bound<0): | 
|  | 130             trueMedium.append(r.id) | 
|  | 131 | 
|  | 132     df_medium = pd.DataFrame() | 
|  | 133     df_medium["reaction"] = trueMedium | 
|  | 134     return df_medium | 
|  | 135 | 
|  | 136 def generate_bounds(model:cobra.Model) -> pd.DataFrame: | 
|  | 137 | 
|  | 138     rxns = [] | 
|  | 139     for reaction in model.reactions: | 
|  | 140         rxns.append(reaction.id) | 
|  | 141 | 
|  | 142     bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns) | 
|  | 143 | 
|  | 144     for reaction in model.reactions: | 
|  | 145         bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] | 
|  | 146     return bounds | 
|  | 147 | 
|  | 148 | 
|  | 149 ###############################- FILE SAVING -################################ | 
|  | 150 def save_as_csv(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: | 
|  | 151     """ | 
|  | 152     Saves any dictionary-shaped data in a .csv file created at the given file_path. | 
|  | 153 | 
|  | 154     Args: | 
|  | 155         data : the data to be written to the file. | 
|  | 156         file_path : the path to the .csv file. | 
|  | 157         fieldNames : the names of the fields (columns) in the .csv file. | 
|  | 158 | 
|  | 159     Returns: | 
|  | 160         None | 
|  | 161     """ | 
|  | 162     with open(file_path.show(), 'w', newline='') as csvfile: | 
|  | 163         writer = csv.DictWriter(csvfile, fieldnames = fieldNames) | 
|  | 164         writer.writeheader() | 
|  | 165 | 
|  | 166         for key, value in data.items(): | 
|  | 167             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | 
|  | 168 | 
|  | 169 ###############################- ENTRY POINT -################################ | 
|  | 170 def main() -> None: | 
|  | 171     """ | 
|  | 172     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 173 | 
|  | 174     Returns: | 
|  | 175         None | 
|  | 176     """ | 
|  | 177     # get args from frontend (related xml) | 
|  | 178     global ARGS | 
|  | 179     ARGS = process_args() | 
|  | 180 | 
|  | 181     # this is the worst thing I've seen so far, congrats to the former MaREA devs for suggesting this! | 
|  | 182     if os.path.isdir(ARGS.out_dir) == False: os.makedirs(ARGS.out_dir) | 
|  | 183 | 
|  | 184     # load custom model | 
|  | 185     model = load_custom_model( | 
|  | 186         utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext) | 
|  | 187 | 
|  | 188     # generate data and save it in the desired format and in a location galaxy understands | 
|  | 189     # (it should show up as a collection in the history) | 
|  | 190     rulesPath     = utils.FilePath("rules",     ARGS.output_format, prefix = ARGS.out_dir) | 
|  | 191     reactionsPath = utils.FilePath("reactions", ARGS.output_format, prefix = ARGS.out_dir) | 
|  | 192     boundsPath = utils.FilePath("bounds",     ARGS.output_format, prefix = ARGS.out_dir) | 
|  | 193     mediumPath = utils.FilePath("medium",     ARGS.output_format, prefix = ARGS.out_dir) | 
|  | 194 | 
|  | 195     if ARGS.output_format is utils.FileFormat.PICKLE: | 
|  | 196         rules = generate_rules(model, asParsed = True) | 
|  | 197         reactions = generate_reactions(model, asParsed = True) | 
|  | 198         bounds = generate_bounds(model) | 
|  | 199         medium = get_medium(model) | 
|  | 200         utils.writePickle(rulesPath,     rules) | 
|  | 201         utils.writePickle(reactionsPath, reactions) | 
|  | 202         utils.writePickle(boundsPath, bounds) | 
|  | 203         utils.writePickle(mediumPath, medium) | 
|  | 204         bounds.to_pickle(boundsPath.show()) | 
|  | 205         medium.to_pickle(mediumPath.show()) | 
|  | 206 | 
|  | 207     elif ARGS.output_format is utils.FileFormat.CSV: | 
|  | 208         rules = generate_rules(model, asParsed = False) | 
|  | 209         reactions = generate_reactions(model, asParsed = False) | 
|  | 210         bounds = generate_bounds(model) | 
|  | 211         medium = get_medium(model) | 
|  | 212         save_as_csv(rules,     rulesPath,     ("ReactionID", "Rule")) | 
|  | 213         save_as_csv(reactions, reactionsPath, ("ReactionID", "Reaction")) | 
|  | 214         bounds.to_csv(boundsPath.show()) | 
|  | 215         medium.to_csv(mediumPath.show()) | 
|  | 216 | 
|  | 217 | 
|  | 218     # ^ Please if anyone works on this after updating python to 3.12 change the if/elif into a match statement!! | 
|  | 219 | 
|  | 220 if __name__ == '__main__': | 
|  | 221     main() |