| 
406
 | 
     1 import os
 | 
| 
 | 
     2 import csv
 | 
| 
 | 
     3 import cobra
 | 
| 
 | 
     4 import pickle
 | 
| 
 | 
     5 import argparse
 | 
| 
 | 
     6 import pandas as pd
 | 
| 
 | 
     7 import utils.general_utils as utils
 | 
| 
 | 
     8 import utils.rule_parsing  as rulesUtils
 | 
| 
 | 
     9 from typing import Optional, Tuple, Union, List, Dict
 | 
| 
 | 
    10 import utils.reaction_parsing as reactionUtils
 | 
| 
 | 
    11 
 | 
| 
 | 
    12 ARGS : argparse.Namespace
 | 
| 
 | 
    13 def process_args(args: List[str] = None) -> argparse.Namespace:
 | 
| 
 | 
    14     """
 | 
| 
 | 
    15     Parse command-line arguments for CustomDataGenerator.
 | 
| 
 | 
    16     """
 | 
| 
 | 
    17 
 | 
| 
 | 
    18     parser = argparse.ArgumentParser(
 | 
| 
 | 
    19         usage="%(prog)s [options]",
 | 
| 
 | 
    20         description="Generate custom data from a given model"
 | 
| 
 | 
    21     )
 | 
| 
 | 
    22 
 | 
| 
 | 
    23     parser.add_argument("--out_log", type=str, required=True,
 | 
| 
 | 
    24                         help="Output log file")
 | 
| 
 | 
    25 
 | 
| 
 | 
    26     parser.add_argument("--model", type=str,
 | 
| 
 | 
    27                         help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)")
 | 
| 
 | 
    28     parser.add_argument("--input", type=str,
 | 
| 
 | 
    29                         help="Custom model file (JSON or XML)")
 | 
| 
 | 
    30     parser.add_argument("--name", type=str, required=True,
 | 
| 
 | 
    31                         help="Model name (default or custom)")
 | 
| 
 | 
    32     
 | 
| 
 | 
    33     parser.add_argument("--medium_selector", type=str, required=True,
 | 
| 
 | 
    34                         help="Medium selection option")
 | 
| 
 | 
    35 
 | 
| 
 | 
    36     parser.add_argument("--gene_format", type=str, default="Default",
 | 
| 
 | 
    37                         help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ")
 | 
| 
 | 
    38     
 | 
| 
 | 
    39     parser.add_argument("--out_tabular", type=str,
 | 
| 
 | 
    40                         help="Output file for the merged dataset (CSV or XLSX)")
 | 
| 
 | 
    41     
 | 
| 
 | 
    42     parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__),
 | 
| 
 | 
    43                         help="Tool directory (passed from Galaxy as $__tool_directory__)")
 | 
| 
 | 
    44 
 | 
| 
 | 
    45 
 | 
| 
 | 
    46     return parser.parse_args(args)
 | 
| 
 | 
    47 
 | 
| 
 | 
    48 ################################- INPUT DATA LOADING -################################
 | 
| 
 | 
    49 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model:
 | 
| 
 | 
    50     """
 | 
| 
 | 
    51     Loads a custom model from a file, either in JSON or XML format.
 | 
| 
 | 
    52 
 | 
| 
 | 
    53     Args:
 | 
| 
 | 
    54         file_path : The path to the file containing the custom model.
 | 
| 
 | 
    55         ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour.
 | 
| 
 | 
    56 
 | 
| 
 | 
    57     Raises:
 | 
| 
 | 
    58         DataErr : if the file is in an invalid format or cannot be opened for whatever reason.    
 | 
| 
 | 
    59     
 | 
| 
 | 
    60     Returns:
 | 
| 
 | 
    61         cobra.Model : the model, if successfully opened.
 | 
| 
 | 
    62     """
 | 
| 
 | 
    63     ext = ext if ext else file_path.ext
 | 
| 
 | 
    64     try:
 | 
| 
 | 
    65         if ext is utils.FileFormat.XML:
 | 
| 
 | 
    66             return cobra.io.read_sbml_model(file_path.show())
 | 
| 
 | 
    67         
 | 
| 
 | 
    68         if ext is utils.FileFormat.JSON:
 | 
| 
 | 
    69             return cobra.io.load_json_model(file_path.show())
 | 
| 
 | 
    70 
 | 
| 
 | 
    71     except Exception as e: raise utils.DataErr(file_path, e.__str__())
 | 
| 
 | 
    72     raise utils.DataErr(file_path,
 | 
| 
 | 
    73         f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML")
 | 
| 
 | 
    74 
 | 
| 
414
 | 
    75 ################################- DATA GENERATION -################################
 | 
| 
 | 
    76 ReactionId = str
 | 
| 
 | 
    77 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
 | 
| 
 | 
    78     """
 | 
| 
 | 
    79     Generates a dictionary mapping reaction ids to rules from the model.
 | 
| 
406
 | 
    80 
 | 
| 
414
 | 
    81     Args:
 | 
| 
 | 
    82         model : the model to derive data from.
 | 
| 
 | 
    83         asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
 | 
| 
 | 
    84 
 | 
| 
 | 
    85     Returns:
 | 
| 
 | 
    86         Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
 | 
| 
 | 
    87         Dict[ReactionId, str] : the generated dictionary of raw rules.
 | 
| 
 | 
    88     """
 | 
| 
 | 
    89     # Is the below approach convoluted? yes
 | 
| 
 | 
    90     # Ok but is it inefficient? probably
 | 
| 
 | 
    91     # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
 | 
| 
 | 
    92     _ruleGetter   =  lambda reaction : reaction.gene_reaction_rule
 | 
| 
 | 
    93     ruleExtractor = (lambda reaction :
 | 
| 
 | 
    94         rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
 | 
| 
 | 
    95 
 | 
| 
 | 
    96     return {
 | 
| 
 | 
    97         reaction.id : ruleExtractor(reaction)
 | 
| 
 | 
    98         for reaction in model.reactions
 | 
| 
 | 
    99         if reaction.gene_reaction_rule }
 | 
| 
 | 
   100 
 | 
| 
 | 
   101 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
 | 
| 
 | 
   102     """
 | 
| 
 | 
   103     Generates a dictionary mapping reaction ids to reaction formulas from the model.
 | 
| 
 | 
   104 
 | 
| 
 | 
   105     Args:
 | 
| 
 | 
   106         model : the model to derive data from.
 | 
| 
 | 
   107         asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
 | 
| 
 | 
   108 
 | 
| 
 | 
   109     Returns:
 | 
| 
 | 
   110         Dict[ReactionId, str] : the generated dictionary.
 | 
| 
 | 
   111     """
 | 
| 
 | 
   112 
 | 
| 
 | 
   113     unparsedReactions = {
 | 
| 
 | 
   114         reaction.id : reaction.reaction
 | 
| 
 | 
   115         for reaction in model.reactions
 | 
| 
 | 
   116         if reaction.reaction 
 | 
| 
 | 
   117     }
 | 
| 
 | 
   118 
 | 
| 
 | 
   119     if not asParsed: return unparsedReactions
 | 
| 
 | 
   120     
 | 
| 
 | 
   121     return reactionUtils.create_reaction_dict(unparsedReactions)
 | 
| 
 | 
   122 
 | 
| 
 | 
   123 def get_medium(model:cobra.Model) -> pd.DataFrame:
 | 
| 
 | 
   124     trueMedium=[]
 | 
| 
 | 
   125     for r in model.reactions:
 | 
| 
 | 
   126         positiveCoeff=0
 | 
| 
 | 
   127         for m in r.metabolites:
 | 
| 
 | 
   128             if r.get_coefficient(m.id)>0:
 | 
| 
 | 
   129                 positiveCoeff=1;
 | 
| 
 | 
   130         if (positiveCoeff==0 and r.lower_bound<0):
 | 
| 
 | 
   131             trueMedium.append(r.id)
 | 
| 
 | 
   132 
 | 
| 
 | 
   133     df_medium = pd.DataFrame()
 | 
| 
 | 
   134     df_medium["reaction"] = trueMedium
 | 
| 
 | 
   135     return df_medium
 | 
| 
 | 
   136 
 | 
| 
 | 
   137 def generate_bounds(model:cobra.Model) -> pd.DataFrame:
 | 
| 
 | 
   138 
 | 
| 
 | 
   139     rxns = []
 | 
| 
 | 
   140     for reaction in model.reactions:
 | 
| 
 | 
   141         rxns.append(reaction.id)
 | 
| 
 | 
   142 
 | 
| 
 | 
   143     bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
 | 
| 
 | 
   144 
 | 
| 
 | 
   145     for reaction in model.reactions:
 | 
| 
 | 
   146         bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
 | 
| 
 | 
   147     return bounds
 | 
| 
 | 
   148 
 | 
| 
 | 
   149 
 | 
| 
 | 
   150 
 | 
| 
 | 
   151 def generate_compartments(model: cobra.Model) -> pd.DataFrame:
 | 
| 
 | 
   152     """
 | 
| 
 | 
   153     Generates a DataFrame containing compartment information for each reaction.
 | 
| 
 | 
   154     Creates columns for each compartment position (Compartment_1, Compartment_2, etc.)
 | 
| 
 | 
   155     
 | 
| 
 | 
   156     Args:
 | 
| 
 | 
   157         model: the COBRA model to extract compartment data from.
 | 
| 
 | 
   158         
 | 
| 
 | 
   159     Returns:
 | 
| 
 | 
   160         pd.DataFrame: DataFrame with ReactionID and compartment columns
 | 
| 
 | 
   161     """
 | 
| 
 | 
   162     pathway_data = []
 | 
| 
 | 
   163 
 | 
| 
 | 
   164     # First pass: determine the maximum number of pathways any reaction has
 | 
| 
 | 
   165     max_pathways = 0
 | 
| 
 | 
   166     reaction_pathways = {}
 | 
| 
 | 
   167 
 | 
| 
 | 
   168     for reaction in model.reactions:
 | 
| 
 | 
   169         # Get unique pathways from all metabolites in the reaction
 | 
| 
 | 
   170         if type(reaction.annotation['pathways']) == list:
 | 
| 
 | 
   171             reaction_pathways[reaction.id] = reaction.annotation['pathways']
 | 
| 
 | 
   172             max_pathways = max(max_pathways, len(reaction.annotation['pathways']))
 | 
| 
 | 
   173         else:
 | 
| 
 | 
   174             reaction_pathways[reaction.id] = [reaction.annotation['pathways']]
 | 
| 
 | 
   175 
 | 
| 
 | 
   176     # Create column names for pathways
 | 
| 
 | 
   177     pathway_columns = [f"Pathway_{i+1}" for i in range(max_pathways)]
 | 
| 
 | 
   178 
 | 
| 
 | 
   179     # Second pass: create the data
 | 
| 
 | 
   180     for reaction_id, pathways in reaction_pathways.items():
 | 
| 
 | 
   181         row = {"ReactionID": reaction_id}
 | 
| 
 | 
   182         
 | 
| 
 | 
   183         # Fill pathway columns
 | 
| 
 | 
   184         for i in range(max_pathways):
 | 
| 
 | 
   185             col_name = pathway_columns[i]
 | 
| 
 | 
   186             if i < len(pathways):
 | 
| 
 | 
   187                 row[col_name] = pathways[i]
 | 
| 
 | 
   188             else:
 | 
| 
 | 
   189                 row[col_name] = None  # or "" if you prefer empty strings
 | 
| 
 | 
   190 
 | 
| 
 | 
   191         pathway_data.append(row)
 | 
| 
 | 
   192 
 | 
| 
 | 
   193     return pd.DataFrame(pathway_data)
 | 
| 
406
 | 
   194 
 | 
| 
 | 
   195 
 | 
| 
 | 
   196 ###############################- FILE SAVING -################################
 | 
| 
 | 
   197 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None:
 | 
| 
 | 
   198     """
 | 
| 
 | 
   199     Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath.
 | 
| 
 | 
   200 
 | 
| 
 | 
   201     Args:
 | 
| 
 | 
   202         data : the data to be written to the file.
 | 
| 
 | 
   203         file_path : the path to the .csv file.
 | 
| 
 | 
   204         fieldNames : the names of the fields (columns) in the .csv file.
 | 
| 
 | 
   205     
 | 
| 
 | 
   206     Returns:
 | 
| 
 | 
   207         None
 | 
| 
 | 
   208     """
 | 
| 
 | 
   209     with open(file_path.show(), 'w', newline='') as csvfile:
 | 
| 
 | 
   210         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
 | 
| 
 | 
   211         writer.writeheader()
 | 
| 
 | 
   212 
 | 
| 
 | 
   213         for key, value in data.items():
 | 
| 
 | 
   214             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
 | 
| 
 | 
   215 
 | 
| 
 | 
   216 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None:
 | 
| 
 | 
   217     """
 | 
| 
 | 
   218     Saves any dictionary-shaped data in a .csv file created at the given file_path as string.
 | 
| 
 | 
   219 
 | 
| 
 | 
   220     Args:
 | 
| 
 | 
   221         data : the data to be written to the file.
 | 
| 
 | 
   222         file_path : the path to the .csv file.
 | 
| 
 | 
   223         fieldNames : the names of the fields (columns) in the .csv file.
 | 
| 
 | 
   224     
 | 
| 
 | 
   225     Returns:
 | 
| 
 | 
   226         None
 | 
| 
 | 
   227     """
 | 
| 
 | 
   228     with open(file_path, 'w', newline='') as csvfile:
 | 
| 
 | 
   229         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
 | 
| 
 | 
   230         writer.writeheader()
 | 
| 
 | 
   231 
 | 
| 
 | 
   232         for key, value in data.items():
 | 
| 
 | 
   233             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
 | 
| 
 | 
   234 
 | 
| 
 | 
   235 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None:
 | 
| 
 | 
   236     try:
 | 
| 
 | 
   237         os.makedirs(os.path.dirname(path) or ".", exist_ok=True)
 | 
| 
 | 
   238         df.to_csv(path, sep="\t", index=False)
 | 
| 
 | 
   239     except Exception as e:
 | 
| 
 | 
   240         raise utils.DataErr(path, f"failed writing tabular output: {e}")
 | 
| 
 | 
   241 
 | 
| 
 | 
   242 
 | 
| 
 | 
   243 ###############################- ENTRY POINT -################################
 | 
| 
 | 
   244 def main(args:List[str] = None) -> None:
 | 
| 
 | 
   245     """
 | 
| 
 | 
   246     Initializes everything and sets the program in motion based on the fronted input arguments.
 | 
| 
 | 
   247     
 | 
| 
 | 
   248     Returns:
 | 
| 
 | 
   249         None
 | 
| 
 | 
   250     """
 | 
| 
 | 
   251     # get args from frontend (related xml)
 | 
| 
 | 
   252     global ARGS
 | 
| 
 | 
   253     ARGS = process_args(args)
 | 
| 
 | 
   254 
 | 
| 
 | 
   255 
 | 
| 
 | 
   256     if ARGS.input:
 | 
| 
 | 
   257         # load custom model
 | 
| 
 | 
   258         model = load_custom_model(
 | 
| 
 | 
   259             utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext)
 | 
| 
 | 
   260     else:
 | 
| 
 | 
   261         # load built-in model
 | 
| 
 | 
   262 
 | 
| 
 | 
   263         try:
 | 
| 
 | 
   264             model_enum = utils.Model[ARGS.model]  # e.g., Model['ENGRO2']
 | 
| 
 | 
   265         except KeyError:
 | 
| 
 | 
   266             raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model)
 | 
| 
 | 
   267 
 | 
| 
 | 
   268         # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models)
 | 
| 
 | 
   269         try:
 | 
| 
 | 
   270             model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir)
 | 
| 
 | 
   271         except Exception as e:
 | 
| 
 | 
   272             # Wrap/normalize load errors as DataErr for consistency
 | 
| 
 | 
   273             raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}")
 | 
| 
 | 
   274 
 | 
| 
 | 
   275     # Determine final model name: explicit --name overrides, otherwise use the model id
 | 
| 
 | 
   276     
 | 
| 
 | 
   277     model_name = ARGS.name if ARGS.name else ARGS.model
 | 
| 
 | 
   278     
 | 
| 
 | 
   279     if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default":
 | 
| 
 | 
   280         df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0)
 | 
| 
 | 
   281         ARGS.medium_selector = ARGS.medium_selector.replace("_", " ")
 | 
| 
 | 
   282         medium = df_mediums[[ARGS.medium_selector]]
 | 
| 
 | 
   283         medium = medium[ARGS.medium_selector].to_dict()
 | 
| 
 | 
   284 
 | 
| 
 | 
   285         # Set all reactions to zero in the medium
 | 
| 
 | 
   286         for rxn_id, _ in model.medium.items():
 | 
| 
 | 
   287             model.reactions.get_by_id(rxn_id).lower_bound = float(0.0)
 | 
| 
 | 
   288         
 | 
| 
 | 
   289         # Set medium conditions
 | 
| 
 | 
   290         for reaction, value in medium.items():
 | 
| 
 | 
   291             if value is not None:
 | 
| 
 | 
   292                 model.reactions.get_by_id(reaction).lower_bound = -float(value)
 | 
| 
 | 
   293 
 | 
| 
 | 
   294     if ARGS.name == "ENGRO2" and ARGS.gene_format != "Default":
 | 
| 
 | 
   295 
 | 
| 
 | 
   296         model = utils.convert_genes(model, ARGS.gene_format.replace("HGNC_", "HGNC "))
 | 
| 
 | 
   297 
 | 
| 
 | 
   298     # generate data
 | 
| 
414
 | 
   299     rules = generate_rules(model, asParsed = False)
 | 
| 
 | 
   300     reactions = generate_reactions(model, asParsed = False)
 | 
| 
 | 
   301     bounds = generate_bounds(model)
 | 
| 
 | 
   302     medium = get_medium(model)
 | 
| 
406
 | 
   303     if ARGS.name == "ENGRO2":
 | 
| 
414
 | 
   304         compartments = generate_compartments(model)
 | 
| 
406
 | 
   305 
 | 
| 
 | 
   306     df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"])
 | 
| 
 | 
   307     df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"])
 | 
| 
 | 
   308 
 | 
| 
 | 
   309     df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"})
 | 
| 
 | 
   310     df_medium = medium.rename(columns = {"reaction": "ReactionID"})
 | 
| 
 | 
   311     df_medium["InMedium"] = True # flag per indicare la presenza nel medium
 | 
| 
 | 
   312 
 | 
| 
 | 
   313     merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer")
 | 
| 
 | 
   314     merged = merged.merge(df_bounds, on = "ReactionID", how = "outer")
 | 
| 
 | 
   315     if ARGS.name == "ENGRO2": 
 | 
| 
 | 
   316         merged = merged.merge(compartments, on = "ReactionID", how = "outer")
 | 
| 
 | 
   317     merged = merged.merge(df_medium, on = "ReactionID", how = "left")
 | 
| 
 | 
   318 
 | 
| 
 | 
   319     merged["InMedium"] = merged["InMedium"].fillna(False)
 | 
| 
 | 
   320 
 | 
| 
 | 
   321     merged = merged.sort_values(by = "InMedium", ascending = False)
 | 
| 
 | 
   322 
 | 
| 
 | 
   323     #out_file = os.path.join(ARGS.output_path, f"{os.path.basename(ARGS.name).split('.')[0]}_custom_data")
 | 
| 
 | 
   324 
 | 
| 
 | 
   325     #merged.to_csv(out_file, sep = '\t', index = False)
 | 
| 
 | 
   326 
 | 
| 
 | 
   327     ####
 | 
| 
 | 
   328 
 | 
| 
 | 
   329     if not ARGS.out_tabular:
 | 
| 
 | 
   330         raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular)
 | 
| 
 | 
   331     save_as_tabular_df(merged, ARGS.out_tabular)
 | 
| 
 | 
   332     expected = ARGS.out_tabular
 | 
| 
 | 
   333 
 | 
| 
 | 
   334     # verify output exists and non-empty
 | 
| 
 | 
   335     if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0:
 | 
| 
 | 
   336         raise utils.DataErr(expected, "Output non creato o vuoto")
 | 
| 
 | 
   337 
 | 
| 
 | 
   338     print("CustomDataGenerator: completed successfully")
 | 
| 
 | 
   339 
 | 
| 
 | 
   340 if __name__ == '__main__':
 | 
| 
 | 
   341     main() |