| 93 | 1 import os | 
|  | 2 import csv | 
|  | 3 import cobra | 
|  | 4 import pickle | 
|  | 5 import argparse | 
|  | 6 import pandas as pd | 
|  | 7 import utils.general_utils as utils | 
|  | 8 import utils.rule_parsing  as rulesUtils | 
| 147 | 9 from typing import Optional, Tuple, Union, List, Dict | 
| 93 | 10 import utils.reaction_parsing as reactionUtils | 
|  | 11 | 
|  | 12 ARGS : argparse.Namespace | 
| 343 | 13 def process_args(args: List[str] = None) -> argparse.Namespace: | 
|  | 14     """ | 
|  | 15     Parse command-line arguments for CustomDataGenerator. | 
| 93 | 16     """ | 
| 343 | 17 | 
|  | 18     parser = argparse.ArgumentParser( | 
|  | 19         usage="%(prog)s [options]", | 
|  | 20         description="Generate custom data from a given model" | 
|  | 21     ) | 
| 93 | 22 | 
| 343 | 23     parser.add_argument("--out_log", type=str, required=True, | 
|  | 24                         help="Output log file") | 
|  | 25     parser.add_argument("--out_data", type=str, required=True, | 
|  | 26                         help="Single output dataset (CSV or Excel)") | 
| 93 | 27 | 
| 343 | 28     parser.add_argument("--model", type=str, | 
|  | 29                         help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)") | 
|  | 30     parser.add_argument("--input", type=str, | 
|  | 31                         help="Custom model file (JSON or XML)") | 
|  | 32     parser.add_argument("--name", type=str, required=True, | 
|  | 33                         help="Model name (default or custom)") | 
| 93 | 34 | 
| 343 | 35     parser.add_argument("--medium_selector", type=str, required=True, | 
|  | 36                         help="Medium selection option (default/custom)") | 
|  | 37     parser.add_argument("--medium", type=str, | 
|  | 38                         help="Custom medium file if medium_selector=Custom") | 
|  | 39 | 
|  | 40     parser.add_argument("--output_format", type=str, choices=["tabular", "xlsx"], required=True, | 
|  | 41                         help="Output format: CSV (tabular) or Excel (xlsx)") | 
|  | 42 | 
|  | 43     parser.add_argument('-idop', '--output_path', type = str, default='result', | 
|  | 44                         help = 'output path for the result files (default: result)') | 
|  | 45 | 
| 353 | 46     parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__), | 
|  | 47                     help="Tool directory (passed from Galaxy as $__tool_directory__)") | 
|  | 48 | 
|  | 49 | 
| 93 | 50 | 
| 343 | 51     return parser.parse_args(args) | 
| 93 | 52 | 
|  | 53 ################################- INPUT DATA LOADING -################################ | 
|  | 54 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: | 
|  | 55     """ | 
|  | 56     Loads a custom model from a file, either in JSON or XML format. | 
|  | 57 | 
|  | 58     Args: | 
|  | 59         file_path : The path to the file containing the custom model. | 
|  | 60         ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour. | 
|  | 61 | 
|  | 62     Raises: | 
|  | 63         DataErr : if the file is in an invalid format or cannot be opened for whatever reason. | 
|  | 64 | 
|  | 65     Returns: | 
|  | 66         cobra.Model : the model, if successfully opened. | 
|  | 67     """ | 
|  | 68     ext = ext if ext else file_path.ext | 
|  | 69     try: | 
|  | 70         if ext is utils.FileFormat.XML: | 
|  | 71             return cobra.io.read_sbml_model(file_path.show()) | 
|  | 72 | 
|  | 73         if ext is utils.FileFormat.JSON: | 
|  | 74             return cobra.io.load_json_model(file_path.show()) | 
|  | 75 | 
|  | 76     except Exception as e: raise utils.DataErr(file_path, e.__str__()) | 
|  | 77     raise utils.DataErr(file_path, | 
|  | 78         f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML") | 
|  | 79 | 
|  | 80 ################################- DATA GENERATION -################################ | 
|  | 81 ReactionId = str | 
|  | 82 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]: | 
|  | 83     """ | 
|  | 84     Generates a dictionary mapping reaction ids to rules from the model. | 
|  | 85 | 
|  | 86     Args: | 
|  | 87         model : the model to derive data from. | 
|  | 88         asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings. | 
|  | 89 | 
|  | 90     Returns: | 
|  | 91         Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules. | 
|  | 92         Dict[ReactionId, str] : the generated dictionary of raw rules. | 
|  | 93     """ | 
|  | 94     # Is the below approach convoluted? yes | 
|  | 95     # Ok but is it inefficient? probably | 
|  | 96     # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane) | 
|  | 97     _ruleGetter   =  lambda reaction : reaction.gene_reaction_rule | 
|  | 98     ruleExtractor = (lambda reaction : | 
|  | 99         rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter | 
|  | 100 | 
|  | 101     return { | 
|  | 102         reaction.id : ruleExtractor(reaction) | 
|  | 103         for reaction in model.reactions | 
|  | 104         if reaction.gene_reaction_rule } | 
|  | 105 | 
|  | 106 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]: | 
|  | 107     """ | 
|  | 108     Generates a dictionary mapping reaction ids to reaction formulas from the model. | 
|  | 109 | 
|  | 110     Args: | 
|  | 111         model : the model to derive data from. | 
|  | 112         asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are. | 
|  | 113 | 
|  | 114     Returns: | 
|  | 115         Dict[ReactionId, str] : the generated dictionary. | 
|  | 116     """ | 
|  | 117 | 
|  | 118     unparsedReactions = { | 
|  | 119         reaction.id : reaction.reaction | 
|  | 120         for reaction in model.reactions | 
|  | 121         if reaction.reaction | 
|  | 122     } | 
|  | 123 | 
|  | 124     if not asParsed: return unparsedReactions | 
|  | 125 | 
|  | 126     return reactionUtils.create_reaction_dict(unparsedReactions) | 
|  | 127 | 
|  | 128 def get_medium(model:cobra.Model) -> pd.DataFrame: | 
|  | 129     trueMedium=[] | 
|  | 130     for r in model.reactions: | 
|  | 131         positiveCoeff=0 | 
|  | 132         for m in r.metabolites: | 
|  | 133             if r.get_coefficient(m.id)>0: | 
|  | 134                 positiveCoeff=1; | 
|  | 135         if (positiveCoeff==0 and r.lower_bound<0): | 
|  | 136             trueMedium.append(r.id) | 
|  | 137 | 
|  | 138     df_medium = pd.DataFrame() | 
|  | 139     df_medium["reaction"] = trueMedium | 
|  | 140     return df_medium | 
|  | 141 | 
|  | 142 def generate_bounds(model:cobra.Model) -> pd.DataFrame: | 
|  | 143 | 
|  | 144     rxns = [] | 
|  | 145     for reaction in model.reactions: | 
|  | 146         rxns.append(reaction.id) | 
|  | 147 | 
|  | 148     bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns) | 
|  | 149 | 
|  | 150     for reaction in model.reactions: | 
|  | 151         bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound] | 
|  | 152     return bounds | 
|  | 153 | 
|  | 154 | 
|  | 155 ###############################- FILE SAVING -################################ | 
|  | 156 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: | 
|  | 157     """ | 
|  | 158     Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath. | 
|  | 159 | 
|  | 160     Args: | 
|  | 161         data : the data to be written to the file. | 
|  | 162         file_path : the path to the .csv file. | 
|  | 163         fieldNames : the names of the fields (columns) in the .csv file. | 
|  | 164 | 
|  | 165     Returns: | 
|  | 166         None | 
|  | 167     """ | 
|  | 168     with open(file_path.show(), 'w', newline='') as csvfile: | 
|  | 169         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | 
|  | 170         writer.writeheader() | 
|  | 171 | 
|  | 172         for key, value in data.items(): | 
|  | 173             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | 
|  | 174 | 
|  | 175 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None: | 
|  | 176     """ | 
|  | 177     Saves any dictionary-shaped data in a .csv file created at the given file_path as string. | 
|  | 178 | 
|  | 179     Args: | 
|  | 180         data : the data to be written to the file. | 
|  | 181         file_path : the path to the .csv file. | 
|  | 182         fieldNames : the names of the fields (columns) in the .csv file. | 
|  | 183 | 
|  | 184     Returns: | 
|  | 185         None | 
|  | 186     """ | 
|  | 187     with open(file_path, 'w', newline='') as csvfile: | 
|  | 188         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | 
|  | 189         writer.writeheader() | 
|  | 190 | 
|  | 191         for key, value in data.items(): | 
|  | 192             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | 
|  | 193 | 
|  | 194 ###############################- ENTRY POINT -################################ | 
| 147 | 195 def main(args:List[str] = None) -> None: | 
| 93 | 196     """ | 
|  | 197     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 198 | 
|  | 199     Returns: | 
|  | 200         None | 
|  | 201     """ | 
|  | 202     # get args from frontend (related xml) | 
|  | 203     global ARGS | 
| 147 | 204     ARGS = process_args(args) | 
| 93 | 205 | 
|  | 206     # this is the worst thing I've seen so far, congrats to the former MaREA devs for suggesting this! | 
| 343 | 207     if os.path.isdir(ARGS.output_path) == False: | 
|  | 208         os.makedirs(ARGS.output_path) | 
|  | 209 | 
| 350 | 210     if ARGS.input: | 
| 343 | 211         # load custom model | 
|  | 212         model = load_custom_model( | 
|  | 213             utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext) | 
|  | 214     else: | 
|  | 215         # load built-in model | 
| 93 | 216 | 
| 343 | 217         try: | 
|  | 218             model_enum = utils.Model[ARGS.model]  # e.g., Model['ENGRO2'] | 
|  | 219         except KeyError: | 
|  | 220             raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model) | 
|  | 221 | 
|  | 222         # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models) | 
|  | 223         try: | 
| 353 | 224             model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir) | 
| 343 | 225         except Exception as e: | 
|  | 226             # Wrap/normalize load errors as DataErr for consistency | 
|  | 227             raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}") | 
|  | 228 | 
|  | 229     # Determine final model name: explicit --name overrides, otherwise use the model id | 
|  | 230     model_name = ARGS.name if ARGS.name else ARGS.model | 
| 93 | 231 | 
|  | 232     # generate data | 
|  | 233     rules = generate_rules(model, asParsed = False) | 
|  | 234     reactions = generate_reactions(model, asParsed = False) | 
|  | 235     bounds = generate_bounds(model) | 
|  | 236     medium = get_medium(model) | 
|  | 237 | 
| 343 | 238     df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "Rule"]) | 
|  | 239     df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Reaction"]) | 
|  | 240 | 
|  | 241     df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) | 
|  | 242     df_medium = medium.rename(columns = {"reaction": "ReactionID"}) | 
|  | 243     df_medium["InMedium"] = True # flag per indicare la presenza nel medium | 
|  | 244 | 
|  | 245     merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer") | 
|  | 246     merged = merged.merge(df_bounds, on = "ReactionID", how = "outer") | 
|  | 247 | 
|  | 248     merged = merged.merge(df_medium, on = "ReactionID", how = "left") | 
|  | 249 | 
|  | 250     merged["InMedium"] = merged["InMedium"].fillna(False) | 
|  | 251 | 
|  | 252     merged = merged.sort_values(by = "InMedium", ascending = False) | 
|  | 253 | 
|  | 254     out_file = os.path.join(ARGS.output_path, f"{os.path.basename(ARGS.name).split('.')[0]}_custom_data") | 
|  | 255 | 
|  | 256     #merged.to_csv(out_file, sep = '\t', index = False) | 
|  | 257 | 
|  | 258 | 
|  | 259     #### | 
| 355 | 260     out_data_path = ARGS.out_data | 
| 343 | 261 | 
|  | 262     # If Galaxy provided a .dat name, ensure a correct extension according to output_format | 
|  | 263     if ARGS.output_format == "xlsx": | 
|  | 264         if not out_data_path.lower().endswith(".xlsx"): | 
|  | 265             out_data_path = out_data_path + ".xlsx" | 
|  | 266         merged.to_excel(out_data_path, index=False) | 
|  | 267     else: | 
|  | 268         # 'tabular' -> tab-separated, extension .csv is fine and common for Galaxy tabular | 
|  | 269         if not (out_data_path.lower().endswith(".csv") or out_data_path.lower().endswith(".tsv")): | 
|  | 270             out_data_path = out_data_path + ".csv" | 
|  | 271         merged.to_csv(out_data_path, sep="\t", index=False) | 
|  | 272 | 
| 348 | 273     print(f"Custom data generated for model '{model_name}' and saved to '{out_data_path}'") | 
| 93 | 274 | 
|  | 275 if __name__ == '__main__': | 
|  | 276     main() |