4
|
1 import os
|
|
2 import csv
|
|
3 import cobra
|
|
4 import pickle
|
|
5 import argparse
|
|
6 import pandas as pd
|
|
7 import utils.general_utils as utils
|
|
8 import utils.rule_parsing as rulesUtils
|
|
9 from typing import Optional, Tuple, Union, Dict
|
|
10 import utils.reaction_parsing as reactionUtils
|
|
11
|
|
12 ARGS : argparse.Namespace
|
|
13 def process_args() -> argparse.Namespace:
|
|
14 """
|
|
15 Interfaces the script of a module with its frontend, making the user's choices for
|
|
16 various parameters available as values in code.
|
|
17
|
|
18 Args:
|
|
19 args : Always obtained (in file) from sys.argv
|
|
20
|
|
21 Returns:
|
|
22 Namespace : An object containing the parsed arguments
|
|
23 """
|
|
24 parser = argparse.ArgumentParser(
|
|
25 usage = "%(prog)s [options]",
|
|
26 description = "generate custom data from a given model")
|
|
27
|
|
28 parser.add_argument("-ol", "--out_log", type = str, required = True, help = "Output log")
|
|
29 parser.add_argument("-id", "--input", type = str, required = True, help = "Input model")
|
|
30 parser.add_argument("-mn", "--name", type = str, required = True, help = "Input model name")
|
|
31 # ^ I need this because galaxy converts my files into .dat but I need to know what extension they were in
|
|
32
|
|
33 parser.add_argument(
|
|
34 "-of", "--output_format",
|
|
35 # vvv I have to use .fromExt because enums in python are the plague and have been implemented by a chimpanzee.
|
|
36 type = utils.FileFormat.fromExt, default = utils.FileFormat.PICKLE,
|
|
37 choices = [utils.FileFormat.CSV, utils.FileFormat.PICKLE],
|
|
38 # ^^^ Not all variants are valid here, otherwise list(utils.FileFormat) would be best.
|
|
39 required = True, help = "Extension of all output files")
|
|
40
|
|
41 argsNamespace = parser.parse_args()
|
|
42 argsNamespace.out_dir = "result"
|
|
43 # ^ can't get this one to work from xml, there doesn't seem to be a way to get the directory attribute from the collection
|
|
44
|
|
45 return argsNamespace
|
|
46
|
|
47 ################################- INPUT DATA LOADING -################################
|
|
48 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model:
|
|
49 """
|
|
50 Loads a custom model from a file, either in JSON or XML format.
|
|
51
|
|
52 Args:
|
|
53 file_path : The path to the file containing the custom model.
|
|
54 ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour.
|
|
55
|
|
56 Raises:
|
|
57 DataErr : if the file is in an invalid format or cannot be opened for whatever reason.
|
|
58
|
|
59 Returns:
|
|
60 cobra.Model : the model, if successfully opened.
|
|
61 """
|
|
62 ext = ext if ext else file_path.ext
|
|
63 try:
|
|
64 if ext is utils.FileFormat.XML:
|
|
65 return cobra.io.read_sbml_model(file_path.show())
|
|
66
|
|
67 if ext is utils.FileFormat.JSON:
|
|
68 return cobra.io.load_json_model(file_path.show())
|
|
69
|
|
70 except Exception as e: raise utils.DataErr(file_path, e.__str__())
|
|
71 raise utils.DataErr(file_path,
|
|
72 f"Formato \"{file_path.ext}\" non riconosciuto, sono supportati solo file JSON e XML")
|
|
73
|
|
74 ################################- DATA GENERATION -################################
|
|
75 ReactionId = str
|
|
76 def generate_rules(model: cobra.Model, *, asParsed = True) -> Union[Dict[ReactionId, rulesUtils.OpList], Dict[ReactionId, str]]:
|
|
77 """
|
|
78 Generates a dictionary mapping reaction ids to rules from the model.
|
|
79
|
|
80 Args:
|
|
81 model : the model to derive data from.
|
|
82 asParsed : if True parses the rules to an optimized runtime format, otherwise leaves them as strings.
|
|
83
|
|
84 Returns:
|
|
85 Dict[ReactionId, rulesUtils.OpList] : the generated dictionary of parsed rules.
|
|
86 Dict[ReactionId, str] : the generated dictionary of raw rules.
|
|
87 """
|
|
88 # Is the below approach convoluted? yes
|
|
89 # Ok but is it inefficient? probably
|
|
90 # Ok but at least I don't have to repeat the check at every rule (I'm clinically insane)
|
|
91 _ruleGetter = lambda reaction : reaction.gene_reaction_rule
|
|
92 ruleExtractor = (lambda reaction :
|
|
93 rulesUtils.parseRuleToNestedList(_ruleGetter(reaction))) if asParsed else _ruleGetter
|
|
94
|
|
95 return {
|
|
96 reaction.id : ruleExtractor(reaction)
|
|
97 for reaction in model.reactions
|
|
98 if reaction.gene_reaction_rule }
|
|
99
|
|
100 def generate_reactions(model :cobra.Model, *, asParsed = True) -> Dict[ReactionId, str]:
|
|
101 """
|
|
102 Generates a dictionary mapping reaction ids to reaction formulas from the model.
|
|
103
|
|
104 Args:
|
|
105 model : the model to derive data from.
|
|
106 asParsed : if True parses the reactions to an optimized runtime format, otherwise leaves them as they are.
|
|
107
|
|
108 Returns:
|
|
109 Dict[ReactionId, str] : the generated dictionary.
|
|
110 """
|
|
111
|
|
112 unparsedReactions = {
|
|
113 reaction.id : reaction.reaction
|
|
114 for reaction in model.reactions
|
|
115 if reaction.reaction
|
|
116 }
|
|
117
|
|
118 if not asParsed: return unparsedReactions
|
|
119
|
|
120 return reactionUtils.create_reaction_dict(unparsedReactions)
|
|
121
|
|
122 def get_medium(model:cobra.Model) -> pd.DataFrame:
|
|
123 trueMedium=[]
|
|
124 for r in model.reactions:
|
|
125 positiveCoeff=0
|
|
126 for m in r.metabolites:
|
|
127 if r.get_coefficient(m.id)>0:
|
|
128 positiveCoeff=1;
|
|
129 if (positiveCoeff==0 and r.lower_bound<0):
|
|
130 trueMedium.append(r.id)
|
|
131
|
|
132 df_medium = pd.DataFrame()
|
|
133 df_medium["reaction"] = trueMedium
|
|
134 return df_medium
|
|
135
|
|
136 def generate_bounds(model:cobra.Model) -> pd.DataFrame:
|
|
137
|
|
138 rxns = []
|
|
139 for reaction in model.reactions:
|
|
140 rxns.append(reaction.id)
|
|
141
|
|
142 bounds = pd.DataFrame(columns = ["lower_bound", "upper_bound"], index=rxns)
|
|
143
|
|
144 for reaction in model.reactions:
|
|
145 bounds.loc[reaction.id] = [reaction.lower_bound, reaction.upper_bound]
|
|
146 return bounds
|
|
147
|
|
148
|
|
149 ###############################- FILE SAVING -################################
|
|
150 def save_as_csv(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None:
|
|
151 """
|
|
152 Saves any dictionary-shaped data in a .csv file created at the given file_path.
|
|
153
|
|
154 Args:
|
|
155 data : the data to be written to the file.
|
|
156 file_path : the path to the .csv file.
|
|
157 fieldNames : the names of the fields (columns) in the .csv file.
|
|
158
|
|
159 Returns:
|
|
160 None
|
|
161 """
|
|
162 with open(file_path.show(), 'w', newline='') as csvfile:
|
|
163 writer = csv.DictWriter(csvfile, fieldnames = fieldNames)
|
|
164 writer.writeheader()
|
|
165
|
|
166 for key, value in data.items():
|
|
167 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
|
|
168
|
|
169 ###############################- ENTRY POINT -################################
|
|
170 def main() -> None:
|
|
171 """
|
|
172 Initializes everything and sets the program in motion based on the fronted input arguments.
|
|
173
|
|
174 Returns:
|
|
175 None
|
|
176 """
|
|
177 # get args from frontend (related xml)
|
|
178 global ARGS
|
|
179 ARGS = process_args()
|
|
180
|
|
181 # this is the worst thing I've seen so far, congrats to the former MaREA devs for suggesting this!
|
|
182 if os.path.isdir(ARGS.out_dir) == False: os.makedirs(ARGS.out_dir)
|
|
183
|
|
184 # load custom model
|
|
185 model = load_custom_model(
|
|
186 utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext)
|
|
187
|
|
188 # generate data and save it in the desired format and in a location galaxy understands
|
|
189 # (it should show up as a collection in the history)
|
|
190 rulesPath = utils.FilePath("rules", ARGS.output_format, prefix = ARGS.out_dir)
|
|
191 reactionsPath = utils.FilePath("reactions", ARGS.output_format, prefix = ARGS.out_dir)
|
|
192 boundsPath = utils.FilePath("bounds", ARGS.output_format, prefix = ARGS.out_dir)
|
|
193 mediumPath = utils.FilePath("medium", ARGS.output_format, prefix = ARGS.out_dir)
|
|
194
|
|
195 if ARGS.output_format is utils.FileFormat.PICKLE:
|
|
196 rules = generate_rules(model, asParsed = True)
|
|
197 reactions = generate_reactions(model, asParsed = True)
|
|
198 bounds = generate_bounds(model)
|
|
199 medium = get_medium(model)
|
|
200 utils.writePickle(rulesPath, rules)
|
|
201 utils.writePickle(reactionsPath, reactions)
|
|
202 utils.writePickle(boundsPath, bounds)
|
|
203 utils.writePickle(mediumPath, medium)
|
|
204 bounds.to_pickle(boundsPath.show())
|
|
205 medium.to_pickle(mediumPath.show())
|
|
206
|
|
207 elif ARGS.output_format is utils.FileFormat.CSV:
|
|
208 rules = generate_rules(model, asParsed = False)
|
|
209 reactions = generate_reactions(model, asParsed = False)
|
|
210 bounds = generate_bounds(model)
|
|
211 medium = get_medium(model)
|
|
212 save_as_csv(rules, rulesPath, ("ReactionID", "Rule"))
|
|
213 save_as_csv(reactions, reactionsPath, ("ReactionID", "Reaction"))
|
|
214 bounds.to_csv(boundsPath.show())
|
|
215 medium.to_csv(mediumPath.show())
|
|
216
|
|
217
|
|
218 # ^ Please if anyone works on this after updating python to 3.12 change the if/elif into a match statement!!
|
|
219
|
|
220 if __name__ == '__main__':
|
|
221 main() |