| 489 | 1 """ | 
|  | 2 Flux sampling and analysis utilities for COBRA models. | 
|  | 3 | 
|  | 4 This script supports two modes: | 
|  | 5 - Mode 1 (model_and_bounds=True): load a base model and apply bounds from | 
|  | 6     separate files before sampling. | 
|  | 7 - Mode 2 (model_and_bounds=False): load complete models and sample directly. | 
|  | 8 | 
|  | 9 Sampling algorithms supported: OPTGP and CBS. Outputs include flux samples | 
|  | 10 and optional analyses (pFBA, FVA, sensitivity), saved as tabular files. | 
|  | 11 """ | 
|  | 12 | 
| 4 | 13 import argparse | 
|  | 14 import utils.general_utils as utils | 
| 489 | 15 from typing import List | 
| 4 | 16 import os | 
| 489 | 17 import pandas as pd | 
| 4 | 18 import numpy as np | 
|  | 19 import cobra | 
|  | 20 import utils.CBS_backend as CBS_backend | 
|  | 21 from joblib import Parallel, delayed, cpu_count | 
|  | 22 from cobra.sampling import OptGPSampler | 
|  | 23 import sys | 
| 489 | 24 import utils.model_utils as model_utils | 
|  | 25 | 
| 4 | 26 | 
|  | 27 ################################# process args ############################### | 
| 489 | 28 def process_args(args: List[str] = None) -> argparse.Namespace: | 
| 4 | 29     """ | 
|  | 30     Processes command-line arguments. | 
| 489 | 31 | 
| 4 | 32     Args: | 
|  | 33         args (list): List of command-line arguments. | 
| 489 | 34 | 
| 4 | 35     Returns: | 
|  | 36         Namespace: An object containing parsed arguments. | 
|  | 37     """ | 
| 489 | 38     parser = argparse.ArgumentParser(usage='%(prog)s [options]', | 
|  | 39                                      description='process some value\'s') | 
|  | 40 | 
|  | 41     parser.add_argument("-mo", "--model_upload", type=str, | 
|  | 42         help="path to input file with custom rules, if provided") | 
|  | 43 | 
|  | 44     parser.add_argument("-mab", "--model_and_bounds", type=str, | 
|  | 45         choices=['True', 'False'], | 
|  | 46         required=True, | 
|  | 47         help="upload mode: True for model+bounds, False for complete models") | 
|  | 48 | 
|  | 49     parser.add_argument("-ens", "--sampling_enabled", type=str, | 
|  | 50         choices=['true', 'false'], | 
|  | 51         required=True, | 
|  | 52         help="enable sampling: 'true' for sampling, 'false' for no sampling") | 
|  | 53 | 
|  | 54     parser.add_argument('-ol', '--out_log', | 
|  | 55                         help="Output log") | 
| 4 | 56 | 
|  | 57     parser.add_argument('-td', '--tool_dir', | 
| 489 | 58                         type=str, | 
|  | 59                         required=True, | 
|  | 60                         help='your tool directory') | 
| 4 | 61 | 
|  | 62     parser.add_argument('-in', '--input', | 
| 489 | 63                         required=True, | 
| 4 | 64                         type=str, | 
| 489 | 65                         help='input bounds files or complete model files') | 
| 4 | 66 | 
| 489 | 67     parser.add_argument('-ni', '--name', | 
|  | 68                         required=True, | 
|  | 69                         type=str, | 
|  | 70                         help='cell names') | 
| 4 | 71 | 
|  | 72     parser.add_argument('-a', '--algorithm', | 
| 489 | 73                         type=str, | 
|  | 74                         choices=['OPTGP', 'CBS'], | 
|  | 75                         required=True, | 
|  | 76                         help='choose sampling algorithm') | 
| 4 | 77 | 
| 489 | 78     parser.add_argument('-th', '--thinning', | 
|  | 79                         type=int, | 
|  | 80                         default=100, | 
|  | 81                         required=True, | 
|  | 82                         help='choose thinning') | 
| 4 | 83 | 
| 489 | 84     parser.add_argument('-ns', '--n_samples', | 
|  | 85                         type=int, | 
|  | 86                         required=True, | 
|  | 87                         help='choose how many samples (set to 0 for optimization only)') | 
|  | 88 | 
|  | 89     parser.add_argument('-sd', '--seed', | 
|  | 90                         type=int, | 
|  | 91                         required=True, | 
|  | 92                         help='seed for random number generation') | 
| 4 | 93 | 
| 489 | 94     parser.add_argument('-nb', '--n_batches', | 
|  | 95                         type=int, | 
|  | 96                         required=True, | 
|  | 97                         help='choose how many batches') | 
| 4 | 98 | 
| 489 | 99     parser.add_argument('-opt', '--perc_opt', | 
|  | 100                         type=float, | 
|  | 101                         default=0.9, | 
|  | 102                         required=False, | 
|  | 103                         help='choose the fraction of optimality for FVA (0-1)') | 
| 4 | 104 | 
| 489 | 105     parser.add_argument('-ot', '--output_type', | 
|  | 106                         type=str, | 
|  | 107                         required=True, | 
|  | 108                         help='output type for sampling results') | 
| 4 | 109 | 
| 489 | 110     parser.add_argument('-ota', '--output_type_analysis', | 
|  | 111                         type=str, | 
|  | 112                         required=False, | 
|  | 113                         help='output type analysis (optimization methods)') | 
| 515 | 114 | 
| 489 | 115     parser.add_argument('-idop', '--output_path', | 
|  | 116                         type=str, | 
| 515 | 117                         default='flux_simulation/', | 
|  | 118                         help = 'output path for fluxes') | 
|  | 119 | 
|  | 120     parser.add_argument('-otm', '--out_mean', | 
|  | 121                     type = str, | 
|  | 122                     help = 'output of mean of fluxes') | 
| 147 | 123 | 
| 515 | 124     parser.add_argument('-otmd', '--out_median', | 
|  | 125                     type = str, | 
|  | 126                     help = 'output of median of fluxes') | 
|  | 127 | 
|  | 128     parser.add_argument('-otq', '--out_quantiles', | 
|  | 129                     type = str, | 
|  | 130                     help = 'output of quantiles of fluxes') | 
|  | 131 | 
|  | 132     parser.add_argument('-otf', '--out_fluxes', | 
|  | 133                     type = str, | 
|  | 134                     help = 'output of fluxes') | 
|  | 135     parser.add_argument('-otfva', '--out_fva', | 
|  | 136                     type = str, | 
|  | 137                     help = 'output of FVA results') | 
|  | 138     parser.add_argument('-otp', '--out_pfba', | 
|  | 139                     type = str, | 
|  | 140                     help = 'output of pFBA results') | 
|  | 141     parser.add_argument('-ots', '--out_sensitivity', | 
|  | 142                     type = str, | 
|  | 143                     help = 'output of sensitivity results') | 
| 147 | 144     ARGS = parser.parse_args(args) | 
| 4 | 145     return ARGS | 
|  | 146 ########################### warning ########################################### | 
|  | 147 def warning(s :str) -> None: | 
|  | 148     """ | 
|  | 149     Log a warning message to an output log file and print it to the console. | 
|  | 150 | 
|  | 151     Args: | 
|  | 152         s (str): The warning message to be logged and printed. | 
|  | 153 | 
|  | 154     Returns: | 
|  | 155       None | 
|  | 156     """ | 
|  | 157     with open(ARGS.out_log, 'a') as log: | 
|  | 158         log.write(s + "\n\n") | 
|  | 159     print(s) | 
|  | 160 | 
|  | 161 | 
| 515 | 162 def write_to_file(dataset: pd.DataFrame, name: str, path: str, keep_index:bool=False)->None: | 
| 489 | 163     """ | 
| 515 | 164     Write a DataFrame to a TSV file under path with a given base name. | 
| 489 | 165 | 
|  | 166     Args: | 
|  | 167         dataset: The DataFrame to write. | 
|  | 168         name: Base file name (without extension). | 
| 515 | 169         path: Directory path where the file will be saved. | 
| 489 | 170         keep_index: Whether to keep the DataFrame index in the file. | 
|  | 171 | 
|  | 172     Returns: | 
|  | 173         None | 
|  | 174     """ | 
| 4 | 175     dataset.index.name = 'Reactions' | 
| 515 | 176     dataset.to_csv(os.path.join(path, name + ".csv"), sep = '\t', index = keep_index) | 
| 4 | 177 | 
|  | 178 ############################ dataset input #################################### | 
|  | 179 def read_dataset(data :str, name :str) -> pd.DataFrame: | 
|  | 180     """ | 
|  | 181     Read a dataset from a CSV file and return it as a pandas DataFrame. | 
|  | 182 | 
|  | 183     Args: | 
|  | 184         data (str): Path to the CSV file containing the dataset. | 
|  | 185         name (str): Name of the dataset, used in error messages. | 
|  | 186 | 
|  | 187     Returns: | 
|  | 188         pandas.DataFrame: DataFrame containing the dataset. | 
|  | 189 | 
|  | 190     Raises: | 
|  | 191         pd.errors.EmptyDataError: If the CSV file is empty. | 
|  | 192         sys.exit: If the CSV file has the wrong format, the execution is aborted. | 
|  | 193     """ | 
|  | 194     try: | 
|  | 195         dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python') | 
|  | 196     except pd.errors.EmptyDataError: | 
|  | 197         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 198     if len(dataset.columns) < 2: | 
|  | 199         sys.exit('Execution aborted: wrong format of ' + name + '\n') | 
|  | 200     return dataset | 
|  | 201 | 
|  | 202 | 
|  | 203 | 
| 489 | 204 def OPTGP_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, thinning: int = 100, n_batches: int = 1, seed: int = 0) -> None: | 
| 4 | 205     """ | 
|  | 206     Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files. | 
| 489 | 207 | 
| 4 | 208     Args: | 
|  | 209         model (cobra.Model): The COBRA model to sample from. | 
|  | 210         model_name (str): The name of the model, used in naming output files. | 
|  | 211         n_samples (int, optional): Number of samples per batch. Default is 1000. | 
|  | 212         thinning (int, optional): Thinning parameter for the sampler. Default is 100. | 
|  | 213         n_batches (int, optional): Number of batches to run. Default is 1. | 
|  | 214         seed (int, optional): Random seed for reproducibility. Default is 0. | 
| 489 | 215 | 
| 4 | 216     Returns: | 
|  | 217         None | 
|  | 218     """ | 
| 489 | 219     import numpy as np | 
|  | 220 | 
|  | 221     # Get reaction IDs for consistent column ordering | 
|  | 222     reaction_ids = [rxn.id for rxn in model.reactions] | 
|  | 223 | 
|  | 224     # Sample and save each batch as numpy file | 
|  | 225     for i in range(n_batches): | 
| 4 | 226         optgp = OptGPSampler(model, thinning, seed) | 
|  | 227         samples = optgp.sample(n_samples) | 
| 489 | 228 | 
|  | 229         # Save as numpy array (more memory efficient) | 
|  | 230         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy" | 
|  | 231         np.save(batch_filename, samples.to_numpy()) | 
|  | 232 | 
|  | 233         seed += 1 | 
|  | 234 | 
|  | 235     # Merge all batches into a single DataFrame | 
|  | 236     all_samples = [] | 
|  | 237 | 
|  | 238     for i in range(n_batches): | 
|  | 239         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy" | 
|  | 240         batch_data = np.load(batch_filename, allow_pickle=True) | 
|  | 241         all_samples.append(batch_data) | 
|  | 242 | 
|  | 243     # Concatenate all batches | 
|  | 244     samplesTotal_array = np.vstack(all_samples) | 
|  | 245 | 
|  | 246     # Convert back to DataFrame with proper column names | 
|  | 247     samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids) | 
|  | 248 | 
|  | 249     # Save the final merged result as CSV | 
| 515 | 250     write_to_file(samplesTotal.T, model_name, ARGS.output_path, True) | 
| 489 | 251 | 
|  | 252     # Clean up temporary numpy files | 
|  | 253     for i in range(n_batches): | 
|  | 254         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_OPTGP.npy" | 
|  | 255         if os.path.exists(batch_filename): | 
|  | 256             os.remove(batch_filename) | 
| 4 | 257 | 
|  | 258 | 
| 489 | 259 def CBS_sampler(model: cobra.Model, model_name: str, n_samples: int = 1000, n_batches: int = 1, seed: int = 0) -> None: | 
| 4 | 260     """ | 
|  | 261     Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files. | 
| 489 | 262 | 
| 4 | 263     Args: | 
|  | 264         model (cobra.Model): The COBRA model to sample from. | 
|  | 265         model_name (str): The name of the model, used in naming output files. | 
|  | 266         n_samples (int, optional): Number of samples per batch. Default is 1000. | 
|  | 267         n_batches (int, optional): Number of batches to run. Default is 1. | 
|  | 268         seed (int, optional): Random seed for reproducibility. Default is 0. | 
| 489 | 269 | 
| 4 | 270     Returns: | 
|  | 271         None | 
|  | 272     """ | 
| 489 | 273     import numpy as np | 
|  | 274 | 
|  | 275     # Get reaction IDs for consistent column ordering | 
|  | 276     reaction_ids = [reaction.id for reaction in model.reactions] | 
|  | 277 | 
|  | 278     # Perform FVA analysis once for all batches | 
|  | 279     df_FVA = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0).round(6) | 
|  | 280 | 
|  | 281     # Generate random objective functions for all samples across all batches | 
|  | 282     df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples * n_batches, df_FVA, seed=seed) | 
| 4 | 283 | 
| 489 | 284     # Sample and save each batch as numpy file | 
|  | 285     for i in range(n_batches): | 
|  | 286         samples = pd.DataFrame(columns=reaction_ids, index=range(n_samples)) | 
|  | 287 | 
| 4 | 288         try: | 
| 489 | 289             CBS_backend.randomObjectiveFunctionSampling( | 
|  | 290                 model, | 
|  | 291                 n_samples, | 
|  | 292                 df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples], | 
|  | 293                 samples | 
|  | 294             ) | 
| 4 | 295         except Exception as e: | 
|  | 296             utils.logWarning( | 
| 489 | 297                 f"Warning: GLPK solver has failed for {model_name}. Trying with COBRA interface. Error: {str(e)}", | 
|  | 298                 ARGS.out_log | 
|  | 299             ) | 
|  | 300             CBS_backend.randomObjectiveFunctionSampling_cobrapy( | 
|  | 301                 model, | 
|  | 302                 n_samples, | 
|  | 303                 df_coefficients.iloc[:, i * n_samples:(i + 1) * n_samples], | 
|  | 304                 samples | 
|  | 305             ) | 
|  | 306 | 
|  | 307         # Save as numpy array (more memory efficient) | 
|  | 308         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy" | 
|  | 309         utils.logWarning(batch_filename, ARGS.out_log) | 
|  | 310         np.save(batch_filename, samples.to_numpy()) | 
|  | 311 | 
|  | 312     # Merge all batches into a single DataFrame | 
|  | 313     all_samples = [] | 
|  | 314 | 
|  | 315     for i in range(n_batches): | 
|  | 316         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy" | 
|  | 317         batch_data = np.load(batch_filename, allow_pickle=True) | 
|  | 318         all_samples.append(batch_data) | 
|  | 319 | 
|  | 320     # Concatenate all batches | 
|  | 321     samplesTotal_array = np.vstack(all_samples) | 
|  | 322 | 
|  | 323     # Convert back to DataFrame with proper column namesq | 
|  | 324     samplesTotal = pd.DataFrame(samplesTotal_array, columns=reaction_ids) | 
|  | 325 | 
|  | 326     # Save the final merged result as CSV | 
| 515 | 327     write_to_file(samplesTotal.T, model_name,  ARGS.output_path, True) | 
| 489 | 328 | 
|  | 329     # Clean up temporary numpy files | 
|  | 330     for i in range(n_batches): | 
|  | 331         batch_filename = f"{ARGS.output_path}/{model_name}_{i}_CBS.npy" | 
|  | 332         if os.path.exists(batch_filename): | 
|  | 333             os.remove(batch_filename) | 
| 4 | 334 | 
|  | 335 | 
| 489 | 336 | 
|  | 337 def model_sampler_with_bounds(model_input_original: cobra.Model, bounds_path: str, cell_name: str) -> List[pd.DataFrame]: | 
| 4 | 338     """ | 
| 489 | 339     MODE 1: Prepares the model with bounds from separate bounds file and performs sampling. | 
| 4 | 340 | 
|  | 341     Args: | 
|  | 342         model_input_original (cobra.Model): The original COBRA model. | 
|  | 343         bounds_path (str): Path to the CSV file containing the bounds dataset. | 
|  | 344         cell_name (str): Name of the cell, used to generate filenames for output. | 
|  | 345 | 
|  | 346     Returns: | 
|  | 347         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. | 
|  | 348     """ | 
|  | 349 | 
|  | 350     model_input = model_input_original.copy() | 
|  | 351     bounds_df = read_dataset(bounds_path, "bounds dataset") | 
|  | 352 | 
| 489 | 353     # Apply bounds to model | 
|  | 354     for rxn_index, row in bounds_df.iterrows(): | 
|  | 355         try: | 
|  | 356             model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound | 
|  | 357             model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound | 
|  | 358         except KeyError: | 
|  | 359             warning(f"Warning: Reaction {rxn_index} not found in model. Skipping.") | 
| 4 | 360 | 
| 489 | 361     return perform_sampling_and_analysis(model_input, cell_name) | 
|  | 362 | 
| 4 | 363 | 
| 489 | 364 def perform_sampling_and_analysis(model_input: cobra.Model, cell_name: str) -> List[pd.DataFrame]: | 
|  | 365     """ | 
|  | 366     Common function to perform sampling and analysis on a prepared model. | 
| 4 | 367 | 
| 489 | 368     Args: | 
|  | 369         model_input (cobra.Model): The prepared COBRA model with bounds applied. | 
|  | 370         cell_name (str): Name of the cell, used to generate filenames for output. | 
| 4 | 371 | 
| 489 | 372     Returns: | 
|  | 373         List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results. | 
|  | 374     """ | 
| 4 | 375 | 
|  | 376     returnList = [] | 
| 489 | 377 | 
|  | 378     if ARGS.sampling_enabled == "true": | 
|  | 379 | 
|  | 380         if ARGS.algorithm == 'OPTGP': | 
|  | 381             OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed) | 
|  | 382         elif ARGS.algorithm == 'CBS': | 
|  | 383             CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed) | 
|  | 384 | 
|  | 385         df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types) | 
|  | 386 | 
|  | 387         if("fluxes" not in ARGS.output_types): | 
|  | 388             os.remove(ARGS.output_path + "/" + cell_name + '.csv') | 
|  | 389 | 
|  | 390         returnList = [df_mean, df_median, df_quantiles] | 
| 4 | 391 | 
| 210 | 392     df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis) | 
| 4 | 393 | 
|  | 394     if("pFBA" in ARGS.output_type_analysis): | 
|  | 395         returnList.append(df_pFBA) | 
|  | 396     if("FVA" in ARGS.output_type_analysis): | 
|  | 397         returnList.append(df_FVA) | 
|  | 398     if("sensitivity" in ARGS.output_type_analysis): | 
|  | 399         returnList.append(df_sensitivity) | 
|  | 400 | 
|  | 401     return returnList | 
|  | 402 | 
|  | 403 def fluxes_statistics(model_name: str,  output_types:List)-> List[pd.DataFrame]: | 
|  | 404     """ | 
|  | 405     Computes statistics (mean, median, quantiles) for the fluxes. | 
|  | 406 | 
|  | 407     Args: | 
|  | 408         model_name (str): Name of the model, used in filename for input. | 
|  | 409         output_types (List[str]): Types of statistics to compute (mean, median, quantiles). | 
|  | 410 | 
|  | 411     Returns: | 
|  | 412         List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics. | 
|  | 413     """ | 
|  | 414 | 
|  | 415     df_mean = pd.DataFrame() | 
|  | 416     df_median= pd.DataFrame() | 
|  | 417     df_quantiles= pd.DataFrame() | 
|  | 418 | 
| 161 | 419     df_samples = pd.read_csv(ARGS.output_path + "/"  +  model_name + '.csv', sep = '\t', index_col = 0).T | 
| 4 | 420     df_samples = df_samples.round(8) | 
|  | 421 | 
|  | 422     for output_type in output_types: | 
|  | 423         if(output_type == "mean"): | 
|  | 424             df_mean = df_samples.mean() | 
|  | 425             df_mean = df_mean.to_frame().T | 
|  | 426             df_mean = df_mean.reset_index(drop=True) | 
|  | 427             df_mean.index = [model_name] | 
|  | 428         elif(output_type == "median"): | 
|  | 429             df_median = df_samples.median() | 
|  | 430             df_median = df_median.to_frame().T | 
|  | 431             df_median = df_median.reset_index(drop=True) | 
|  | 432             df_median.index = [model_name] | 
|  | 433         elif(output_type == "quantiles"): | 
|  | 434             newRow = [] | 
|  | 435             cols = [] | 
|  | 436             for rxn in df_samples.columns: | 
|  | 437                 quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75]) | 
|  | 438                 newRow.append(quantiles[0.25]) | 
|  | 439                 cols.append(rxn + "_q1") | 
|  | 440                 newRow.append(quantiles[0.5]) | 
|  | 441                 cols.append(rxn + "_q2") | 
|  | 442                 newRow.append(quantiles[0.75]) | 
|  | 443                 cols.append(rxn + "_q3") | 
|  | 444             df_quantiles = pd.DataFrame(columns=cols) | 
|  | 445             df_quantiles.loc[0] = newRow | 
|  | 446             df_quantiles = df_quantiles.reset_index(drop=True) | 
|  | 447             df_quantiles.index = [model_name] | 
|  | 448 | 
|  | 449     return df_mean, df_median, df_quantiles | 
|  | 450 | 
|  | 451 def fluxes_analysis(model:cobra.Model,  model_name:str, output_types:List)-> List[pd.DataFrame]: | 
|  | 452     """ | 
| 489 | 453     Performs flux analysis including pFBA, FVA, and sensitivity analysis. The objective function | 
|  | 454     is assumed to be already set in the model. | 
| 4 | 455 | 
|  | 456     Args: | 
|  | 457         model (cobra.Model): The COBRA model to analyze. | 
|  | 458         model_name (str): Name of the model, used in filenames for output. | 
|  | 459         output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity). | 
|  | 460 | 
|  | 461     Returns: | 
|  | 462         List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results. | 
|  | 463     """ | 
|  | 464 | 
|  | 465     df_pFBA = pd.DataFrame() | 
|  | 466     df_FVA= pd.DataFrame() | 
|  | 467     df_sensitivity= pd.DataFrame() | 
|  | 468 | 
|  | 469     for output_type in output_types: | 
|  | 470         if(output_type == "pFBA"): | 
|  | 471             solution = cobra.flux_analysis.pfba(model) | 
|  | 472             fluxes = solution.fluxes | 
| 489 | 473             df_pFBA.loc[0,[rxn.id for rxn in model.reactions]] = fluxes.tolist() | 
| 4 | 474             df_pFBA = df_pFBA.reset_index(drop=True) | 
|  | 475             df_pFBA.index = [model_name] | 
|  | 476             df_pFBA = df_pFBA.astype(float).round(6) | 
|  | 477         elif(output_type == "FVA"): | 
| 489 | 478             fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=ARGS.perc_opt, processes=1).round(8) | 
| 4 | 479             columns = [] | 
|  | 480             for rxn in fva.index.to_list(): | 
|  | 481                 columns.append(rxn + "_min") | 
|  | 482                 columns.append(rxn + "_max") | 
|  | 483             df_FVA= pd.DataFrame(columns = columns) | 
|  | 484             for index_rxn, row in fva.iterrows(): | 
|  | 485                 df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"] | 
|  | 486                 df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"] | 
|  | 487             df_FVA = df_FVA.reset_index(drop=True) | 
|  | 488             df_FVA.index = [model_name] | 
|  | 489             df_FVA = df_FVA.astype(float).round(6) | 
|  | 490         elif(output_type == "sensitivity"): | 
|  | 491             solution_original = model.optimize().objective_value | 
|  | 492             reactions = model.reactions | 
|  | 493             single = cobra.flux_analysis.single_reaction_deletion(model) | 
|  | 494             newRow = [] | 
|  | 495             df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name]) | 
|  | 496             for rxn in reactions: | 
|  | 497                 newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original) | 
|  | 498             df_sensitivity.loc[model_name] = newRow | 
|  | 499             df_sensitivity = df_sensitivity.astype(float).round(6) | 
|  | 500     return df_pFBA, df_FVA, df_sensitivity | 
|  | 501 | 
|  | 502 ############################# main ########################################### | 
| 489 | 503 def main(args: List[str] = None) -> None: | 
| 4 | 504     """ | 
| 489 | 505     Initialize and run sampling/analysis based on the frontend input arguments. | 
| 4 | 506 | 
|  | 507     Returns: | 
|  | 508         None | 
|  | 509     """ | 
|  | 510 | 
| 489 | 511     num_processors = max(1, cpu_count() - 1) | 
| 4 | 512 | 
|  | 513     global ARGS | 
| 147 | 514     ARGS = process_args(args) | 
| 158 | 515 | 
| 515 | 516     if not os.path.exists('flux_simulation'): | 
|  | 517         os.makedirs('flux_simulation') | 
| 489 | 518 | 
|  | 519     # --- Normalize inputs (the tool may pass comma-separated --input and either --name or --names) --- | 
|  | 520     ARGS.input_files = ARGS.input.split(",") if ARGS.input else [] | 
|  | 521     ARGS.file_names = ARGS.name.split(",") | 
|  | 522     # output types (required) -> list | 
|  | 523     ARGS.output_types = ARGS.output_type.split(",") if ARGS.output_type else [] | 
|  | 524     # optional analysis output types -> list or empty | 
|  | 525     ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") if ARGS.output_type_analysis else [] | 
|  | 526 | 
|  | 527     # Determine if sampling should be performed | 
|  | 528     if ARGS.sampling_enabled == "true": | 
|  | 529         perform_sampling = True | 
| 4 | 530     else: | 
| 489 | 531         perform_sampling = False | 
| 334 | 532 | 
| 489 | 533     print("=== INPUT FILES ===") | 
|  | 534     print(f"{ARGS.input_files}") | 
|  | 535     print(f"{ARGS.file_names}") | 
|  | 536     print(f"{ARGS.output_type}") | 
|  | 537     print(f"{ARGS.output_types}") | 
|  | 538     print(f"{ARGS.output_type_analysis}") | 
|  | 539     print(f"Sampling enabled: {perform_sampling} (n_samples: {ARGS.n_samples})") | 
| 4 | 540 | 
| 489 | 541     if ARGS.model_and_bounds == "True": | 
|  | 542         # MODE 1: Model + bounds (separate files) | 
|  | 543         print("=== MODE 1: Model + Bounds (separate files) ===") | 
|  | 544 | 
|  | 545         # Load base model | 
|  | 546         if not ARGS.model_upload: | 
|  | 547             sys.exit("Error: model_upload is required for Mode 1") | 
| 4 | 548 | 
| 489 | 549         base_model = model_utils.build_cobra_model_from_csv(ARGS.model_upload) | 
| 4 | 550 | 
| 489 | 551         validation = model_utils.validate_model(base_model) | 
|  | 552 | 
|  | 553         print("\n=== MODEL VALIDATION ===") | 
|  | 554         for key, value in validation.items(): | 
|  | 555             print(f"{key}: {value}") | 
|  | 556 | 
|  | 557         # Set solver verbosity to 1 to see warning and error messages only. | 
|  | 558         base_model.solver.configuration.verbosity = 1 | 
| 4 | 559 | 
| 489 | 560         # Process each bounds file with the base model | 
|  | 561         results = Parallel(n_jobs=num_processors)( | 
|  | 562             delayed(model_sampler_with_bounds)(base_model, bounds_file, cell_name) | 
|  | 563             for bounds_file, cell_name in zip(ARGS.input_files, ARGS.file_names) | 
|  | 564         ) | 
| 4 | 565 | 
| 489 | 566     else: | 
|  | 567         # MODE 2: Multiple complete models | 
|  | 568         print("=== MODE 2: Multiple complete models ===") | 
|  | 569 | 
|  | 570         # Process each complete model file | 
|  | 571         results = Parallel(n_jobs=num_processors)( | 
|  | 572             delayed(perform_sampling_and_analysis)(model_utils.build_cobra_model_from_csv(model_file), cell_name) | 
|  | 573             for model_file, cell_name in zip(ARGS.input_files, ARGS.file_names) | 
|  | 574         ) | 
|  | 575 | 
|  | 576     # Handle sampling outputs (only if sampling was performed) | 
|  | 577     if perform_sampling: | 
|  | 578         print("=== PROCESSING SAMPLING RESULTS ===") | 
|  | 579 | 
|  | 580         all_mean = pd.concat([result[0] for result in results], ignore_index=False) | 
|  | 581         all_median = pd.concat([result[1] for result in results], ignore_index=False) | 
|  | 582         all_quantiles = pd.concat([result[2] for result in results], ignore_index=False) | 
| 4 | 583 | 
| 489 | 584         if "mean" in ARGS.output_types: | 
|  | 585             all_mean = all_mean.fillna(0.0) | 
|  | 586             all_mean = all_mean.sort_index() | 
| 515 | 587             write_to_file(all_mean.T, "mean", ARGS.out_mean, True) | 
| 489 | 588 | 
|  | 589         if "median" in ARGS.output_types: | 
|  | 590             all_median = all_median.fillna(0.0) | 
|  | 591             all_median = all_median.sort_index() | 
| 515 | 592             write_to_file(all_median.T, "median", ARGS.out_median, True) | 
| 489 | 593 | 
|  | 594         if "quantiles" in ARGS.output_types: | 
|  | 595             all_quantiles = all_quantiles.fillna(0.0) | 
|  | 596             all_quantiles = all_quantiles.sort_index() | 
| 515 | 597             write_to_file(all_quantiles.T, "quantiles", ARGS.out_quantiles, True) | 
| 489 | 598     else: | 
|  | 599         print("=== SAMPLING SKIPPED (n_samples = 0 or sampling disabled) ===") | 
|  | 600 | 
|  | 601     # Handle optimization analysis outputs (always available) | 
|  | 602     print("=== PROCESSING OPTIMIZATION RESULTS ===") | 
| 4 | 603 | 
| 489 | 604     # Determine the starting index for optimization results | 
|  | 605     # If sampling was performed, optimization results start at index 3 | 
|  | 606     # If no sampling, optimization results start at index 0 | 
|  | 607     index_result = 3 if perform_sampling else 0 | 
|  | 608 | 
|  | 609     if "pFBA" in ARGS.output_type_analysis: | 
| 4 | 610         all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 611         all_pFBA = all_pFBA.sort_index() | 
| 515 | 612         write_to_file(all_pFBA.T, "pFBA", ARGS.out_pfba, True) | 
| 489 | 613         index_result += 1 | 
|  | 614 | 
|  | 615     if "FVA" in ARGS.output_type_analysis: | 
|  | 616         all_FVA = pd.concat([result[index_result] for result in results], ignore_index=False) | 
| 4 | 617         all_FVA = all_FVA.sort_index() | 
| 515 | 618         write_to_file(all_FVA.T, "FVA", ARGS.out_fva, True) | 
| 489 | 619         index_result += 1 | 
|  | 620 | 
|  | 621     if "sensitivity" in ARGS.output_type_analysis: | 
| 4 | 622         all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False) | 
|  | 623         all_sensitivity = all_sensitivity.sort_index() | 
| 515 | 624         write_to_file(all_sensitivity.T, "sensitivity", ARGS.out_sensitivity, True) | 
| 4 | 625 | 
| 489 | 626     return | 
| 4 | 627 | 
|  | 628 ############################################################################## | 
|  | 629 if __name__ == "__main__": | 
|  | 630     main() |