| 
93
 | 
     1 from __future__ import division
 | 
| 
 | 
     2 # galaxy complains this ^^^ needs to be at the very beginning of the file, for some reason.
 | 
| 
 | 
     3 import sys
 | 
| 
 | 
     4 import argparse
 | 
| 
 | 
     5 import collections
 | 
| 
 | 
     6 import pandas as pd
 | 
| 
 | 
     7 import pickle as pk
 | 
| 
 | 
     8 import utils.general_utils as utils
 | 
| 
 | 
     9 import utils.rule_parsing as ruleUtils
 | 
| 
 | 
    10 from typing import Union, Optional, List, Dict, Tuple, TypeVar
 | 
| 
 | 
    11 
 | 
| 
 | 
    12 ERRORS = []
 | 
| 
 | 
    13 ########################## argparse ##########################################
 | 
| 
 | 
    14 ARGS :argparse.Namespace
 | 
| 
147
 | 
    15 def process_args(args:List[str] = None) -> argparse.Namespace:
 | 
| 
93
 | 
    16     """
 | 
| 
 | 
    17     Processes command-line arguments.
 | 
| 
 | 
    18 
 | 
| 
 | 
    19     Args:
 | 
| 
 | 
    20         args (list): List of command-line arguments.
 | 
| 
 | 
    21 
 | 
| 
 | 
    22     Returns:
 | 
| 
 | 
    23         Namespace: An object containing parsed arguments.
 | 
| 
 | 
    24     """
 | 
| 
 | 
    25     parser = argparse.ArgumentParser(
 | 
| 
 | 
    26         usage = '%(prog)s [options]',
 | 
| 
 | 
    27         description = "process some value's genes to create a comparison's map.")
 | 
| 
 | 
    28     
 | 
| 
 | 
    29     parser.add_argument(
 | 
| 
 | 
    30         '-rs', '--rules_selector', 
 | 
| 
 | 
    31         type = utils.Model, default = utils.Model.HMRcore, choices = list(utils.Model),
 | 
| 
 | 
    32         help = 'chose which type of dataset you want use')
 | 
| 
 | 
    33     
 | 
| 
 | 
    34     parser.add_argument("-rl", "--rule_list", type = str,
 | 
| 
 | 
    35         help = "path to input file with custom rules, if provided")
 | 
| 
 | 
    36 
 | 
| 
 | 
    37     parser.add_argument("-rn", "--rules_name", type = str, help = "custom rules name")
 | 
| 
 | 
    38     # ^ I need this because galaxy converts my files into .dat but I need to know what extension they were in
 | 
| 
 | 
    39     
 | 
| 
 | 
    40     parser.add_argument(
 | 
| 
 | 
    41         '-n', '--none',
 | 
| 
 | 
    42         type = utils.Bool("none"), default = True,
 | 
| 
 | 
    43         help = 'compute Nan values')
 | 
| 
 | 
    44     
 | 
| 
 | 
    45     parser.add_argument(
 | 
| 
 | 
    46         '-td', '--tool_dir',
 | 
| 
 | 
    47         type = str,
 | 
| 
 | 
    48         required = True, help = 'your tool directory')
 | 
| 
 | 
    49     
 | 
| 
 | 
    50     parser.add_argument(
 | 
| 
 | 
    51         '-ol', '--out_log',
 | 
| 
 | 
    52         type = str,
 | 
| 
 | 
    53         help = "Output log")    
 | 
| 
 | 
    54     
 | 
| 
 | 
    55     parser.add_argument(
 | 
| 
 | 
    56         '-in', '--input', #id รจ diventato in
 | 
| 
 | 
    57         type = str,
 | 
| 
 | 
    58         help = 'input dataset')
 | 
| 
 | 
    59     
 | 
| 
 | 
    60     parser.add_argument(
 | 
| 
 | 
    61         '-ra', '--ras_output',
 | 
| 
 | 
    62         type = str,
 | 
| 
 | 
    63         required = True, help = 'ras output')
 | 
| 
147
 | 
    64 
 | 
| 
93
 | 
    65     
 | 
| 
147
 | 
    66     return parser.parse_args(args)
 | 
| 
93
 | 
    67 
 | 
| 
 | 
    68 ############################ dataset input ####################################
 | 
| 
 | 
    69 def read_dataset(data :str, name :str) -> pd.DataFrame:
 | 
| 
 | 
    70     """
 | 
| 
 | 
    71     Read a dataset from a CSV file and return it as a pandas DataFrame.
 | 
| 
 | 
    72 
 | 
| 
 | 
    73     Args:
 | 
| 
 | 
    74         data (str): Path to the CSV file containing the dataset.
 | 
| 
 | 
    75         name (str): Name of the dataset, used in error messages.
 | 
| 
 | 
    76 
 | 
| 
 | 
    77     Returns:
 | 
| 
 | 
    78         pandas.DataFrame: DataFrame containing the dataset.
 | 
| 
 | 
    79 
 | 
| 
 | 
    80     Raises:
 | 
| 
 | 
    81         pd.errors.EmptyDataError: If the CSV file is empty.
 | 
| 
 | 
    82         sys.exit: If the CSV file has the wrong format, the execution is aborted.
 | 
| 
 | 
    83     """
 | 
| 
 | 
    84     try:
 | 
| 
 | 
    85         dataset = pd.read_csv(data, sep = '\t', header = 0, engine='python')
 | 
| 
 | 
    86     except pd.errors.EmptyDataError:
 | 
| 
 | 
    87         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
    88     if len(dataset.columns) < 2:
 | 
| 
 | 
    89         sys.exit('Execution aborted: wrong format of ' + name + '\n')
 | 
| 
 | 
    90     return dataset
 | 
| 
 | 
    91 
 | 
| 
 | 
    92 ############################ load id e rules ##################################
 | 
| 
 | 
    93 def load_id_rules(reactions :Dict[str, Dict[str, List[str]]]) -> Tuple[List[str], List[Dict[str, List[str]]]]:
 | 
| 
 | 
    94     """
 | 
| 
 | 
    95     Load IDs and rules from a dictionary of reactions.
 | 
| 
 | 
    96 
 | 
| 
 | 
    97     Args:
 | 
| 
 | 
    98         reactions (dict): A dictionary where keys are IDs and values are rules.
 | 
| 
 | 
    99 
 | 
| 
 | 
   100     Returns:
 | 
| 
 | 
   101         tuple: A tuple containing two lists, the first list containing IDs and the second list containing rules.
 | 
| 
 | 
   102     """
 | 
| 
 | 
   103     ids, rules = [], []
 | 
| 
 | 
   104     for key, value in reactions.items():
 | 
| 
 | 
   105             ids.append(key)
 | 
| 
 | 
   106             rules.append(value)
 | 
| 
 | 
   107     return (ids, rules)
 | 
| 
 | 
   108 
 | 
| 
 | 
   109 ############################ check_methods ####################################
 | 
| 
 | 
   110 def gene_type(l :str, name :str) -> str:
 | 
| 
 | 
   111     """
 | 
| 
 | 
   112     Determine the type of gene ID.
 | 
| 
 | 
   113 
 | 
| 
 | 
   114     Args:
 | 
| 
 | 
   115         l (str): The gene identifier to check.
 | 
| 
 | 
   116         name (str): The name of the dataset, used in error messages.
 | 
| 
 | 
   117 
 | 
| 
 | 
   118     Returns:
 | 
| 
 | 
   119         str: The type of gene ID ('hugo_id', 'ensembl_gene_id', 'symbol', or 'entrez_id').
 | 
| 
 | 
   120 
 | 
| 
 | 
   121     Raises:
 | 
| 
 | 
   122         sys.exit: If the gene ID type is not supported, the execution is aborted.
 | 
| 
 | 
   123     """
 | 
| 
 | 
   124     if check_hgnc(l):
 | 
| 
 | 
   125         return 'hugo_id'
 | 
| 
 | 
   126     elif check_ensembl(l):
 | 
| 
 | 
   127         return 'ensembl_gene_id'
 | 
| 
 | 
   128     elif check_symbol(l):
 | 
| 
 | 
   129         return 'symbol'
 | 
| 
 | 
   130     elif check_entrez(l):
 | 
| 
 | 
   131         return 'entrez_id'
 | 
| 
 | 
   132     else:
 | 
| 
 | 
   133         sys.exit('Execution aborted:\n' +
 | 
| 
 | 
   134                  'gene ID type in ' + name + ' not supported. Supported ID'+
 | 
| 
 | 
   135                  'types are: HUGO ID, Ensemble ID, HUGO symbol, Entrez ID\n')
 | 
| 
 | 
   136 
 | 
| 
 | 
   137 def check_hgnc(l :str) -> bool:
 | 
| 
 | 
   138     """
 | 
| 
 | 
   139     Check if a gene identifier follows the HGNC format.
 | 
| 
 | 
   140 
 | 
| 
 | 
   141     Args:
 | 
| 
 | 
   142         l (str): The gene identifier to check.
 | 
| 
 | 
   143 
 | 
| 
 | 
   144     Returns:
 | 
| 
 | 
   145         bool: True if the gene identifier follows the HGNC format, False otherwise.
 | 
| 
 | 
   146     """
 | 
| 
 | 
   147     if len(l) > 5:
 | 
| 
 | 
   148         if (l.upper()).startswith('HGNC:'):
 | 
| 
 | 
   149             return l[5:].isdigit()
 | 
| 
 | 
   150         else:
 | 
| 
 | 
   151             return False
 | 
| 
 | 
   152     else:
 | 
| 
 | 
   153         return False
 | 
| 
 | 
   154 
 | 
| 
 | 
   155 def check_ensembl(l :str) -> bool:
 | 
| 
 | 
   156     """
 | 
| 
 | 
   157     Check if a gene identifier follows the Ensembl format.
 | 
| 
 | 
   158 
 | 
| 
 | 
   159     Args:
 | 
| 
 | 
   160         l (str): The gene identifier to check.
 | 
| 
 | 
   161 
 | 
| 
 | 
   162     Returns:
 | 
| 
 | 
   163         bool: True if the gene identifier follows the Ensembl format, False otherwise.
 | 
| 
 | 
   164     """
 | 
| 
 | 
   165     return l.upper().startswith('ENS')
 | 
| 
 | 
   166  
 | 
| 
 | 
   167 
 | 
| 
 | 
   168 def check_symbol(l :str) -> bool:
 | 
| 
 | 
   169     """
 | 
| 
 | 
   170     Check if a gene identifier follows the symbol format.
 | 
| 
 | 
   171 
 | 
| 
 | 
   172     Args:
 | 
| 
 | 
   173         l (str): The gene identifier to check.
 | 
| 
 | 
   174 
 | 
| 
 | 
   175     Returns:
 | 
| 
 | 
   176         bool: True if the gene identifier follows the symbol format, False otherwise.
 | 
| 
 | 
   177     """
 | 
| 
 | 
   178     if len(l) > 0:
 | 
| 
 | 
   179         if l[0].isalpha() and l[1:].isalnum():
 | 
| 
 | 
   180             return True
 | 
| 
 | 
   181         else:
 | 
| 
 | 
   182             return False
 | 
| 
 | 
   183     else:
 | 
| 
 | 
   184         return False
 | 
| 
 | 
   185 
 | 
| 
 | 
   186 def check_entrez(l :str) -> bool:
 | 
| 
 | 
   187     """
 | 
| 
 | 
   188     Check if a gene identifier follows the Entrez ID format.
 | 
| 
 | 
   189 
 | 
| 
 | 
   190     Args:
 | 
| 
 | 
   191         l (str): The gene identifier to check.
 | 
| 
 | 
   192 
 | 
| 
 | 
   193     Returns:
 | 
| 
 | 
   194         bool: True if the gene identifier follows the Entrez ID format, False otherwise.
 | 
| 
 | 
   195     """ 
 | 
| 
 | 
   196     if len(l) > 0:
 | 
| 
 | 
   197         return l.isdigit()
 | 
| 
 | 
   198     else: 
 | 
| 
 | 
   199         return False
 | 
| 
 | 
   200 
 | 
| 
 | 
   201 ############################ gene #############################################
 | 
| 
 | 
   202 def data_gene(gene: pd.DataFrame, type_gene: str, name: str, gene_custom: Optional[Dict[str, str]]) -> Dict[str, str]:
 | 
| 
 | 
   203     """
 | 
| 
 | 
   204     Process gene data to ensure correct formatting and handle duplicates.
 | 
| 
 | 
   205 
 | 
| 
 | 
   206     Args:
 | 
| 
 | 
   207         gene (DataFrame): DataFrame containing gene data.
 | 
| 
 | 
   208         type_gene (str): Type of gene data (e.g., 'hugo_id', 'ensembl_gene_id', 'symbol', 'entrez_id').
 | 
| 
 | 
   209         name (str): Name of the dataset.
 | 
| 
 | 
   210         gene_custom (dict or None): Custom gene data dictionary if provided.
 | 
| 
 | 
   211 
 | 
| 
 | 
   212     Returns:
 | 
| 
 | 
   213         dict: A dictionary containing gene data with gene IDs as keys and corresponding values.
 | 
| 
 | 
   214     """
 | 
| 
 | 
   215     args = process_args()    
 | 
| 
 | 
   216     for i in range(len(gene)):
 | 
| 
 | 
   217         tmp = gene.iloc[i, 0]
 | 
| 
 | 
   218         gene.iloc[i, 0] = tmp.strip().split('.')[0]
 | 
| 
 | 
   219 
 | 
| 
 | 
   220     gene_dup = [item for item, count in 
 | 
| 
 | 
   221                collections.Counter(gene[gene.columns[0]]).items() if count > 1]
 | 
| 
 | 
   222     pat_dup = [item for item, count in 
 | 
| 
 | 
   223                collections.Counter(list(gene.columns)).items() if count > 1]
 | 
| 
260
 | 
   224     
 | 
| 
 | 
   225     gene_in_rule = None
 | 
| 
259
 | 
   226 
 | 
| 
93
 | 
   227     if gene_dup:
 | 
| 
 | 
   228         if gene_custom == None:
 | 
| 
263
 | 
   229             print(args.rules_selector)
 | 
| 
264
 | 
   230             print(str(args.rules_selector) == 'ENGRO2')
 | 
| 
 | 
   231 
 | 
| 
93
 | 
   232             if args.rules_selector == 'HMRcore':
 | 
| 
261
 | 
   233                 print(1)
 | 
| 
93
 | 
   234                 gene_in_rule = pk.load(open(args.tool_dir + '/local/pickle files/HMRcore_genes.p', 'rb'))
 | 
| 
 | 
   235             
 | 
| 
 | 
   236             elif args.rules_selector == 'Recon':
 | 
| 
261
 | 
   237                 print(2)
 | 
| 
93
 | 
   238                 gene_in_rule = pk.load(open(args.tool_dir + '/local/pickle files/Recon_genes.p', 'rb'))
 | 
| 
 | 
   239             
 | 
| 
 | 
   240             elif args.rules_selector == 'ENGRO2':
 | 
| 
261
 | 
   241                 print(3)
 | 
| 
93
 | 
   242                 gene_in_rule = pk.load(open(args.tool_dir + '/local/pickle files/ENGRO2_genes.p', 'rb'))
 | 
| 
263
 | 
   243 
 | 
| 
260
 | 
   244             utils.logWarning(f"{args.tool_dir}'/local/pickle files/ENGRO2_genes.p'", ARGS.out_log)
 | 
| 
259
 | 
   245 
 | 
| 
93
 | 
   246             gene_in_rule = gene_in_rule.get(type_gene)
 | 
| 
 | 
   247         
 | 
| 
 | 
   248         else:
 | 
| 
 | 
   249             gene_in_rule = gene_custom
 | 
| 
260
 | 
   250 
 | 
| 
93
 | 
   251         tmp = []
 | 
| 
 | 
   252         for i in gene_dup:
 | 
| 
 | 
   253             if gene_in_rule.get(i) == 'ok':
 | 
| 
 | 
   254                 tmp.append(i)
 | 
| 
 | 
   255         if tmp:
 | 
| 
 | 
   256             sys.exit('Execution aborted because gene ID '
 | 
| 
 | 
   257                      +str(tmp)+' in '+name+' is duplicated\n')
 | 
| 
 | 
   258     
 | 
| 
 | 
   259     if pat_dup: utils.logWarning(f"Warning: duplicated label\n{pat_dup} in {name}", ARGS.out_log)
 | 
| 
 | 
   260     return (gene.set_index(gene.columns[0])).to_dict()
 | 
| 
 | 
   261 
 | 
| 
 | 
   262 ############################ resolve ##########################################
 | 
| 
 | 
   263 def replace_gene_value(l :str, d :str) -> Tuple[Union[int, float], list]:
 | 
| 
 | 
   264     """
 | 
| 
 | 
   265     Replace gene identifiers with corresponding values from a dictionary.
 | 
| 
 | 
   266 
 | 
| 
 | 
   267     Args:
 | 
| 
 | 
   268         l (str): String of gene identifier.
 | 
| 
 | 
   269         d (str): String corresponding to its value.
 | 
| 
 | 
   270 
 | 
| 
 | 
   271     Returns:
 | 
| 
 | 
   272         tuple: A tuple containing two lists: the first list contains replaced values, and the second list contains any errors encountered during replacement.
 | 
| 
 | 
   273     """
 | 
| 
 | 
   274     tmp = []
 | 
| 
 | 
   275     err = []
 | 
| 
 | 
   276     while l:
 | 
| 
 | 
   277         if isinstance(l[0], list):
 | 
| 
 | 
   278             tmp_rules, tmp_err = replace_gene_value(l[0], d)
 | 
| 
 | 
   279             tmp.append(tmp_rules)
 | 
| 
 | 
   280             err.extend(tmp_err)
 | 
| 
 | 
   281         else:
 | 
| 
 | 
   282             value = replace_gene(l[0], d)
 | 
| 
 | 
   283             tmp.append(value)
 | 
| 
 | 
   284             if value == None:
 | 
| 
 | 
   285                 err.append(l[0])
 | 
| 
 | 
   286         l = l[1:]
 | 
| 
 | 
   287     return (tmp, err)
 | 
| 
 | 
   288 
 | 
| 
 | 
   289 def replace_gene(l :str, d :str) -> Union[int, float]:
 | 
| 
 | 
   290     """
 | 
| 
 | 
   291     Replace a single gene identifier with its corresponding value from a dictionary.
 | 
| 
 | 
   292 
 | 
| 
 | 
   293     Args:
 | 
| 
 | 
   294         l (str): Gene identifier to replace.
 | 
| 
 | 
   295         d (str): String corresponding to its value.
 | 
| 
 | 
   296 
 | 
| 
 | 
   297     Returns:
 | 
| 
 | 
   298         float/int: Corresponding value from the dictionary if found, None otherwise.
 | 
| 
 | 
   299 
 | 
| 
 | 
   300     Raises:
 | 
| 
 | 
   301         sys.exit: If the value associated with the gene identifier is not valid.
 | 
| 
 | 
   302     """
 | 
| 
 | 
   303     if l =='and' or l == 'or':
 | 
| 
 | 
   304         return l
 | 
| 
 | 
   305     else:
 | 
| 
 | 
   306         value = d.get(l, None)
 | 
| 
 | 
   307         if not(value == None or isinstance(value, (int, float))):
 | 
| 
 | 
   308             sys.exit('Execution aborted: ' + value + ' value not valid\n')
 | 
| 
 | 
   309         return value
 | 
| 
 | 
   310 
 | 
| 
 | 
   311 T = TypeVar("T", bound = Optional[Union[int, float]])
 | 
| 
 | 
   312 def computes(val1 :T, op :str, val2 :T, cn :bool) -> T:
 | 
| 
 | 
   313     """
 | 
| 
 | 
   314     Compute the RAS value between two value and an operator ('and' or 'or').
 | 
| 
 | 
   315 
 | 
| 
 | 
   316     Args:
 | 
| 
 | 
   317         val1(Optional(Union[float, int])): First value.
 | 
| 
 | 
   318         op (str): Operator ('and' or 'or').
 | 
| 
 | 
   319         val2(Optional(Union[float, int])): Second value.
 | 
| 
 | 
   320         cn (bool): Control boolean value.
 | 
| 
 | 
   321 
 | 
| 
 | 
   322     Returns:
 | 
| 
 | 
   323         Optional(Union[float, int]): Result of the computation.
 | 
| 
 | 
   324     """
 | 
| 
 | 
   325     if val1 != None and val2 != None:
 | 
| 
 | 
   326         if op == 'and':
 | 
| 
 | 
   327             return min(val1, val2)
 | 
| 
 | 
   328         else:
 | 
| 
 | 
   329             return val1 + val2
 | 
| 
 | 
   330     elif op == 'and':
 | 
| 
 | 
   331         if cn is True:
 | 
| 
 | 
   332             if val1 != None:
 | 
| 
 | 
   333                 return val1
 | 
| 
 | 
   334             elif val2 != None:
 | 
| 
 | 
   335                 return val2
 | 
| 
 | 
   336             else:
 | 
| 
 | 
   337                 return None
 | 
| 
 | 
   338         else:
 | 
| 
 | 
   339             return None
 | 
| 
 | 
   340     else:
 | 
| 
 | 
   341         if val1 != None:
 | 
| 
 | 
   342             return val1
 | 
| 
 | 
   343         elif val2 != None:
 | 
| 
 | 
   344             return val2
 | 
| 
 | 
   345         else:
 | 
| 
 | 
   346             return None
 | 
| 
 | 
   347 
 | 
| 
 | 
   348 # ris should be Literal[None] but Literal is not supported in Python 3.7
 | 
| 
 | 
   349 def control(ris, l :List[Union[int, float, list]], cn :bool) -> Union[bool, int, float]: #Union[Literal[False], int, float]:
 | 
| 
 | 
   350     """
 | 
| 
 | 
   351     Control the format of the expression.
 | 
| 
 | 
   352 
 | 
| 
 | 
   353     Args:
 | 
| 
 | 
   354         ris: Intermediate result.
 | 
| 
 | 
   355         l (list): Expression to control.
 | 
| 
 | 
   356         cn (bool): Control boolean value.
 | 
| 
 | 
   357 
 | 
| 
 | 
   358     Returns:
 | 
| 
 | 
   359         Union[Literal[False], int, float]: Result of the control.
 | 
| 
 | 
   360     """
 | 
| 
 | 
   361     if len(l) == 1:
 | 
| 
 | 
   362         if isinstance(l[0], (float, int)) or l[0] == None:
 | 
| 
 | 
   363             return l[0]
 | 
| 
 | 
   364         elif isinstance(l[0], list):
 | 
| 
 | 
   365             return control(None, l[0], cn)
 | 
| 
 | 
   366         else:
 | 
| 
 | 
   367             return False
 | 
| 
 | 
   368     elif len(l) > 2:
 | 
| 
 | 
   369         return control_list(ris, l, cn)
 | 
| 
 | 
   370     else:
 | 
| 
 | 
   371         return False
 | 
| 
 | 
   372 
 | 
| 
 | 
   373 def control_list(ris, l :List[Optional[Union[float, int, list]]], cn :bool) -> Optional[bool]: #Optional[Literal[False]]:
 | 
| 
 | 
   374     """
 | 
| 
 | 
   375     Control the format of a list of expressions.
 | 
| 
 | 
   376 
 | 
| 
 | 
   377     Args:
 | 
| 
 | 
   378         ris: Intermediate result.
 | 
| 
 | 
   379         l (list): List of expressions to control.
 | 
| 
 | 
   380         cn (bool): Control boolean value.
 | 
| 
 | 
   381 
 | 
| 
 | 
   382     Returns:
 | 
| 
 | 
   383         Optional[Literal[False]]: Result of the control.
 | 
| 
 | 
   384     """
 | 
| 
 | 
   385     while l:
 | 
| 
 | 
   386         if len(l) == 1:
 | 
| 
 | 
   387             return False
 | 
| 
 | 
   388         elif (isinstance(l[0], (float, int)) or
 | 
| 
 | 
   389               l[0] == None) and l[1] in ['and', 'or']:
 | 
| 
 | 
   390             if isinstance(l[2], (float, int)) or l[2] == None:
 | 
| 
 | 
   391                 ris = computes(l[0], l[1], l[2], cn)            
 | 
| 
 | 
   392             elif isinstance(l[2], list):
 | 
| 
 | 
   393                 tmp = control(None, l[2], cn)
 | 
| 
 | 
   394                 if tmp is False:
 | 
| 
 | 
   395                     return False
 | 
| 
 | 
   396                 else:
 | 
| 
 | 
   397                     ris = computes(l[0], l[1], tmp, cn)
 | 
| 
 | 
   398             else:
 | 
| 
 | 
   399                 return False
 | 
| 
 | 
   400             l = l[3:]
 | 
| 
 | 
   401         elif l[0] in ['and', 'or']:
 | 
| 
 | 
   402             if isinstance(l[1], (float, int)) or l[1] == None:
 | 
| 
 | 
   403                 ris = computes(ris, l[0], l[1], cn)
 | 
| 
 | 
   404             elif isinstance(l[1], list):
 | 
| 
 | 
   405                 tmp = control(None,l[1], cn)
 | 
| 
 | 
   406                 if tmp is False:
 | 
| 
 | 
   407                     return False
 | 
| 
 | 
   408                 else:
 | 
| 
 | 
   409                     ris = computes(ris, l[0], tmp, cn)
 | 
| 
 | 
   410             else:
 | 
| 
 | 
   411                 return False
 | 
| 
 | 
   412             l = l[2:]
 | 
| 
 | 
   413         elif isinstance(l[0], list) and l[1] in ['and', 'or']:
 | 
| 
 | 
   414             if isinstance(l[2], (float, int)) or l[2] == None:
 | 
| 
 | 
   415                 tmp = control(None, l[0], cn)
 | 
| 
 | 
   416                 if tmp is False:
 | 
| 
 | 
   417                     return False
 | 
| 
 | 
   418                 else:
 | 
| 
 | 
   419                     ris = computes(tmp, l[1], l[2], cn)
 | 
| 
 | 
   420             elif isinstance(l[2], list):
 | 
| 
 | 
   421                 tmp = control(None, l[0], cn)
 | 
| 
 | 
   422                 tmp2 = control(None, l[2], cn)
 | 
| 
 | 
   423                 if tmp is False or tmp2 is False:
 | 
| 
 | 
   424                     return False
 | 
| 
 | 
   425                 else:
 | 
| 
 | 
   426                     ris = computes(tmp, l[1], tmp2, cn)
 | 
| 
 | 
   427             else:
 | 
| 
 | 
   428                 return False
 | 
| 
 | 
   429             l = l[3:]
 | 
| 
 | 
   430         else:
 | 
| 
 | 
   431             return False
 | 
| 
 | 
   432     return ris
 | 
| 
 | 
   433 
 | 
| 
 | 
   434 ResolvedRules = Dict[str, List[Optional[Union[float, int]]]]
 | 
| 
 | 
   435 def resolve(genes: Dict[str, str], rules: List[str], ids: List[str], resolve_none: bool, name: str) -> Tuple[Optional[ResolvedRules], Optional[list]]:
 | 
| 
 | 
   436     """
 | 
| 
 | 
   437     Resolve rules using gene data to compute scores for each rule.
 | 
| 
 | 
   438 
 | 
| 
 | 
   439     Args:
 | 
| 
 | 
   440         genes (dict): Dictionary containing gene data with gene IDs as keys and corresponding values.
 | 
| 
 | 
   441         rules (list): List of rules to resolve.
 | 
| 
 | 
   442         ids (list): List of IDs corresponding to the rules.
 | 
| 
 | 
   443         resolve_none (bool): Flag indicating whether to resolve None values in the rules.
 | 
| 
 | 
   444         name (str): Name of the dataset.
 | 
| 
 | 
   445 
 | 
| 
 | 
   446     Returns:
 | 
| 
 | 
   447         tuple: A tuple containing resolved rules as a dictionary and a list of gene IDs not found in the data.
 | 
| 
 | 
   448     """
 | 
| 
 | 
   449     resolve_rules = {}
 | 
| 
 | 
   450     not_found = []
 | 
| 
 | 
   451     flag = False
 | 
| 
 | 
   452     for key, value in genes.items():
 | 
| 
 | 
   453         tmp_resolve = []
 | 
| 
 | 
   454         for i in range(len(rules)):
 | 
| 
 | 
   455             tmp = rules[i]
 | 
| 
 | 
   456             if tmp:
 | 
| 
 | 
   457                 tmp, err = replace_gene_value(tmp, value)
 | 
| 
 | 
   458                 if err:
 | 
| 
 | 
   459                     not_found.extend(err)
 | 
| 
 | 
   460                 ris = control(None, tmp, resolve_none)
 | 
| 
 | 
   461                 if ris is False or ris == None:
 | 
| 
 | 
   462                     tmp_resolve.append(None)
 | 
| 
 | 
   463                 else:
 | 
| 
 | 
   464                     tmp_resolve.append(ris)
 | 
| 
 | 
   465                     flag = True
 | 
| 
 | 
   466             else:
 | 
| 
 | 
   467                 tmp_resolve.append(None)    
 | 
| 
 | 
   468         resolve_rules[key] = tmp_resolve
 | 
| 
 | 
   469     
 | 
| 
 | 
   470     if flag is False:
 | 
| 
 | 
   471         utils.logWarning(
 | 
| 
 | 
   472             f"Warning: no computable score (due to missing gene values) for class {name}, the class has been disregarded",
 | 
| 
 | 
   473             ARGS.out_log)
 | 
| 
 | 
   474         
 | 
| 
 | 
   475         return (None, None)
 | 
| 
 | 
   476     
 | 
| 
 | 
   477     return (resolve_rules, list(set(not_found)))
 | 
| 
 | 
   478 ############################ create_ras #######################################
 | 
| 
 | 
   479 def create_ras(resolve_rules: Optional[ResolvedRules], dataset_name: str, rules: List[str], ids: List[str], file: str) -> None:
 | 
| 
 | 
   480     """
 | 
| 
 | 
   481     Create a RAS (Reaction Activity Score) file from resolved rules.
 | 
| 
 | 
   482 
 | 
| 
 | 
   483     Args:
 | 
| 
 | 
   484         resolve_rules (dict): Dictionary containing resolved rules.
 | 
| 
 | 
   485         dataset_name (str): Name of the dataset.
 | 
| 
 | 
   486         rules (list): List of rules.
 | 
| 
 | 
   487         file (str): Path to the output RAS file.
 | 
| 
 | 
   488 
 | 
| 
 | 
   489     Returns:
 | 
| 
 | 
   490         None
 | 
| 
 | 
   491     """
 | 
| 
 | 
   492     if resolve_rules is None:
 | 
| 
 | 
   493         utils.logWarning(f"Couldn't generate RAS for current dataset: {dataset_name}", ARGS.out_log)
 | 
| 
 | 
   494 
 | 
| 
 | 
   495     for geni in resolve_rules.values():
 | 
| 
 | 
   496         for i, valori in enumerate(geni):
 | 
| 
 | 
   497             if valori == None:
 | 
| 
 | 
   498                 geni[i] = 'None'
 | 
| 
 | 
   499                 
 | 
| 
 | 
   500     output_ras = pd.DataFrame.from_dict(resolve_rules)
 | 
| 
 | 
   501     
 | 
| 
 | 
   502     output_ras.insert(0, 'Reactions', ids)
 | 
| 
 | 
   503     output_to_csv = pd.DataFrame.to_csv(output_ras, sep = '\t', index = False)
 | 
| 
 | 
   504     
 | 
| 
 | 
   505     text_file = open(file, "w")
 | 
| 
 | 
   506     
 | 
| 
 | 
   507     text_file.write(output_to_csv)
 | 
| 
 | 
   508     text_file.close()
 | 
| 
 | 
   509 
 | 
| 
 | 
   510 ################################- NEW RAS COMPUTATION -################################
 | 
| 
 | 
   511 Expr = Optional[Union[int, float]]
 | 
| 
 | 
   512 Ras  = Expr
 | 
| 
 | 
   513 def ras_for_cell_lines(dataset: pd.DataFrame, rules: Dict[str, ruleUtils.OpList]) -> Dict[str, Dict[str, Ras]]:
 | 
| 
 | 
   514     """
 | 
| 
 | 
   515     Generates the RAS scores for each cell line found in the dataset.
 | 
| 
 | 
   516 
 | 
| 
 | 
   517     Args:
 | 
| 
 | 
   518         dataset (pd.DataFrame): Dataset containing gene values.
 | 
| 
 | 
   519         rules (dict): The dict containing reaction ids as keys and rules as values.
 | 
| 
 | 
   520 
 | 
| 
 | 
   521     Side effects:
 | 
| 
 | 
   522         dataset : mut
 | 
| 
 | 
   523     
 | 
| 
 | 
   524     Returns:
 | 
| 
 | 
   525         dict: A dictionary where each key corresponds to a cell line name and each value is a dictionary
 | 
| 
 | 
   526         where each key corresponds to a reaction ID and each value is its computed RAS score.
 | 
| 
 | 
   527     """
 | 
| 
 | 
   528     ras_values_by_cell_line = {}
 | 
| 
 | 
   529     dataset.set_index(dataset.columns[0], inplace=True)
 | 
| 
 | 
   530     # Considera tutte le colonne tranne la prima in cui ci sono gli hugo quindi va scartata
 | 
| 
 | 
   531     for cell_line_name in dataset.columns[1:]:
 | 
| 
 | 
   532         cell_line = dataset[cell_line_name].to_dict()
 | 
| 
 | 
   533         ras_values_by_cell_line[cell_line_name]= get_ras_values(rules, cell_line)
 | 
| 
 | 
   534     return ras_values_by_cell_line
 | 
| 
 | 
   535 
 | 
| 
 | 
   536 def get_ras_values(value_rules: Dict[str, ruleUtils.OpList], dataset: Dict[str, Expr]) -> Dict[str, Ras]:
 | 
| 
 | 
   537     """
 | 
| 
 | 
   538     Computes the RAS (Reaction Activity Score) values for each rule in the given dict.
 | 
| 
 | 
   539 
 | 
| 
 | 
   540     Args:
 | 
| 
 | 
   541         value_rules (dict): A dictionary where keys are reaction ids and values are OpLists.
 | 
| 
 | 
   542         dataset : gene expression data of one cell line.
 | 
| 
 | 
   543 
 | 
| 
 | 
   544     Returns:
 | 
| 
 | 
   545         dict: A dictionary where keys are reaction ids and values are the computed RAS values for each rule.
 | 
| 
 | 
   546     """
 | 
| 
 | 
   547     return {key: ras_op_list(op_list, dataset) for key, op_list in value_rules.items()}
 | 
| 
 | 
   548 
 | 
| 
 | 
   549 def get_gene_expr(dataset :Dict[str, Expr], name :str) -> Expr:
 | 
| 
 | 
   550     """
 | 
| 
 | 
   551     Extracts the gene expression of the given gene from a cell line dataset.
 | 
| 
 | 
   552 
 | 
| 
 | 
   553     Args:
 | 
| 
 | 
   554         dataset : gene expression data of one cell line.
 | 
| 
 | 
   555         name : gene name.
 | 
| 
 | 
   556     
 | 
| 
 | 
   557     Returns:
 | 
| 
 | 
   558         Expr : the gene's expression value.
 | 
| 
 | 
   559     """
 | 
| 
 | 
   560     expr = dataset.get(name, None)
 | 
| 
 | 
   561     if expr is None: ERRORS.append(name)
 | 
| 
 | 
   562   
 | 
| 
 | 
   563     return expr
 | 
| 
 | 
   564 
 | 
| 
 | 
   565 def ras_op_list(op_list: ruleUtils.OpList, dataset: Dict[str, Expr]) -> Ras:
 | 
| 
 | 
   566     """
 | 
| 
 | 
   567     Computes recursively the RAS (Reaction Activity Score) value for the given OpList, considering the specified flag to control None behavior.
 | 
| 
 | 
   568 
 | 
| 
 | 
   569     Args:
 | 
| 
 | 
   570         op_list (OpList): The OpList representing a rule with gene values.
 | 
| 
 | 
   571         dataset : gene expression data of one cell line.
 | 
| 
 | 
   572 
 | 
| 
 | 
   573     Returns:
 | 
| 
 | 
   574         Ras: The computed RAS value for the given OpList.
 | 
| 
 | 
   575     """
 | 
| 
 | 
   576     op = op_list.op
 | 
| 
 | 
   577     ras_value :Ras = None
 | 
| 
 | 
   578     if not op: return get_gene_expr(dataset, op_list[0])
 | 
| 
 | 
   579     if op is ruleUtils.RuleOp.AND and not ARGS.none and None in op_list: return None
 | 
| 
 | 
   580 
 | 
| 
 | 
   581     for i in range(len(op_list)):
 | 
| 
 | 
   582         item = op_list[i]
 | 
| 
 | 
   583         if isinstance(item, ruleUtils.OpList):
 | 
| 
 | 
   584             item = ras_op_list(item, dataset)
 | 
| 
 | 
   585 
 | 
| 
 | 
   586         else:
 | 
| 
 | 
   587           item = get_gene_expr(dataset, item)
 | 
| 
 | 
   588 
 | 
| 
 | 
   589         if item is None:
 | 
| 
 | 
   590           if op is ruleUtils.RuleOp.AND and not ARGS.none: return None
 | 
| 
 | 
   591           continue
 | 
| 
 | 
   592 
 | 
| 
 | 
   593         if ras_value is None:
 | 
| 
 | 
   594           ras_value = item
 | 
| 
 | 
   595         else:
 | 
| 
 | 
   596           ras_value = ras_value + item if op is ruleUtils.RuleOp.OR else min(ras_value, item)
 | 
| 
 | 
   597 
 | 
| 
 | 
   598     return ras_value
 | 
| 
 | 
   599 
 | 
| 
 | 
   600 def save_as_tsv(rasScores: Dict[str, Dict[str, Ras]], reactions :List[str]) -> None:
 | 
| 
 | 
   601     """
 | 
| 
 | 
   602     Save computed ras scores to the given path, as a tsv file.
 | 
| 
 | 
   603 
 | 
| 
 | 
   604     Args:
 | 
| 
 | 
   605         rasScores : the computed ras scores.
 | 
| 
 | 
   606         path : the output tsv file's path.
 | 
| 
 | 
   607     
 | 
| 
 | 
   608     Returns:
 | 
| 
 | 
   609         None
 | 
| 
 | 
   610     """
 | 
| 
 | 
   611     for scores in rasScores.values(): # this is actually a lot faster than using the ootb dataframe metod, sadly
 | 
| 
 | 
   612         for reactId, score in scores.items():
 | 
| 
 | 
   613             if score is None: scores[reactId] = "None"
 | 
| 
 | 
   614 
 | 
| 
 | 
   615     output_ras = pd.DataFrame.from_dict(rasScores)
 | 
| 
 | 
   616     output_ras.insert(0, 'Reactions', reactions)
 | 
| 
 | 
   617     output_ras.to_csv(ARGS.ras_output, sep = '\t', index = False)
 | 
| 
 | 
   618 
 | 
| 
 | 
   619 ############################ MAIN #############################################
 | 
| 
 | 
   620 #TODO: not used but keep, it will be when the new translator dicts will be used.
 | 
| 
 | 
   621 def translateGene(geneName :str, encoding :str, geneTranslator :Dict[str, Dict[str, str]]) -> str:
 | 
| 
 | 
   622     """
 | 
| 
 | 
   623     Translate gene from any supported encoding to HugoID.
 | 
| 
 | 
   624 
 | 
| 
 | 
   625     Args:
 | 
| 
 | 
   626         geneName (str): the name of the gene in its current encoding.
 | 
| 
 | 
   627         encoding (str): the encoding.
 | 
| 
 | 
   628         geneTranslator (Dict[str, Dict[str, str]]): the dict containing all supported gene names
 | 
| 
 | 
   629         and encodings in the current model, mapping each to the corresponding HugoID encoding.
 | 
| 
 | 
   630 
 | 
| 
 | 
   631     Raises:
 | 
| 
 | 
   632         ValueError: When the gene isn't supported in the model.
 | 
| 
 | 
   633 
 | 
| 
 | 
   634     Returns:
 | 
| 
 | 
   635         str: the gene in HugoID encoding.
 | 
| 
 | 
   636     """
 | 
| 
 | 
   637     supportedGenesInEncoding = geneTranslator[encoding]
 | 
| 
 | 
   638     if geneName in supportedGenesInEncoding: return supportedGenesInEncoding[geneName]
 | 
| 
 | 
   639     raise ValueError(f"Gene \"{geneName}\" non trovato, verifica di star utilizzando il modello corretto!")
 | 
| 
 | 
   640 
 | 
| 
 | 
   641 def load_custom_rules() -> Dict[str, ruleUtils.OpList]:
 | 
| 
 | 
   642     """
 | 
| 
 | 
   643     Opens custom rules file and extracts the rules. If the file is in .csv format an additional parsing step will be
 | 
| 
 | 
   644     performed, significantly impacting the runtime.
 | 
| 
 | 
   645 
 | 
| 
 | 
   646     Returns:
 | 
| 
 | 
   647         Dict[str, ruleUtils.OpList] : dict mapping reaction IDs to rules.
 | 
| 
 | 
   648     """
 | 
| 
 | 
   649     datFilePath = utils.FilePath.fromStrPath(ARGS.rule_list) # actual file, stored in galaxy as a .dat
 | 
| 
 | 
   650     
 | 
| 
 | 
   651     try: filenamePath = utils.FilePath.fromStrPath(ARGS.rules_name) # file's name in input, to determine its original ext
 | 
| 
 | 
   652     except utils.PathErr as err:
 | 
| 
 | 
   653         raise utils.PathErr(filenamePath, f"Please make sure your file's name is a valid file path, {err.msg}")
 | 
| 
 | 
   654      
 | 
| 
 | 
   655     if filenamePath.ext is utils.FileFormat.PICKLE: return utils.readPickle(datFilePath)
 | 
| 
 | 
   656 
 | 
| 
 | 
   657     # csv rules need to be parsed, those in a pickle format are taken to be pre-parsed.
 | 
| 
 | 
   658     return { line[0] : ruleUtils.parseRuleToNestedList(line[1]) for line in utils.readCsv(datFilePath) }
 | 
| 
 | 
   659 
 | 
| 
147
 | 
   660 def main(args:List[str] = None) -> None:
 | 
| 
93
 | 
   661     """
 | 
| 
 | 
   662     Initializes everything and sets the program in motion based on the fronted input arguments.
 | 
| 
 | 
   663     
 | 
| 
 | 
   664     Returns:
 | 
| 
 | 
   665         None
 | 
| 
 | 
   666     """
 | 
| 
 | 
   667     # get args from frontend (related xml)
 | 
| 
 | 
   668     global ARGS
 | 
| 
147
 | 
   669     ARGS = process_args(args)
 | 
| 
93
 | 
   670     print(ARGS.rules_selector)
 | 
| 
 | 
   671     # read dataset
 | 
| 
 | 
   672     dataset = read_dataset(ARGS.input, "dataset")
 | 
| 
 | 
   673     dataset.iloc[:, 0] = (dataset.iloc[:, 0]).astype(str)
 | 
| 
 | 
   674 
 | 
| 
 | 
   675     # remove versioning from gene names
 | 
| 
 | 
   676     dataset.iloc[:, 0] = dataset.iloc[:, 0].str.split('.').str[0]
 | 
| 
 | 
   677 
 | 
| 
 | 
   678     # handle custom models
 | 
| 
 | 
   679     model :utils.Model = ARGS.rules_selector
 | 
| 
 | 
   680     if model is utils.Model.Custom:
 | 
| 
 | 
   681         rules = load_custom_rules()
 | 
| 
 | 
   682         reactions = list(rules.keys())
 | 
| 
 | 
   683 
 | 
| 
 | 
   684         save_as_tsv(ras_for_cell_lines(dataset, rules), reactions)
 | 
| 
 | 
   685         if ERRORS: utils.logWarning(
 | 
| 
 | 
   686             f"The following genes are mentioned in the rules but don't appear in the dataset: {ERRORS}",
 | 
| 
 | 
   687             ARGS.out_log)
 | 
| 
 | 
   688         
 | 
| 
 | 
   689         return
 | 
| 
 | 
   690     
 | 
| 
 | 
   691     # This is the standard flow of the ras_generator program, for non-custom models.
 | 
| 
 | 
   692     name = "RAS Dataset"
 | 
| 
 | 
   693     type_gene = gene_type(dataset.iloc[0, 0], name)
 | 
| 
 | 
   694 
 | 
| 
 | 
   695     rules      = model.getRules(ARGS.tool_dir)
 | 
| 
 | 
   696     genes      = data_gene(dataset, type_gene, name, None)
 | 
| 
 | 
   697     ids, rules = load_id_rules(rules.get(type_gene))
 | 
| 
 | 
   698     
 | 
| 
 | 
   699     resolve_rules, err = resolve(genes, rules, ids, ARGS.none, name)
 | 
| 
 | 
   700     create_ras(resolve_rules, name, rules, ids, ARGS.ras_output)
 | 
| 
 | 
   701     
 | 
| 
 | 
   702     if err: utils.logWarning(
 | 
| 
 | 
   703         f"Warning: gene(s) {err} not found in class \"{name}\", " +
 | 
| 
 | 
   704         "the expression level for this gene will be considered NaN",
 | 
| 
 | 
   705         ARGS.out_log)
 | 
| 
 | 
   706     
 | 
| 
 | 
   707     print("Execution succeded")
 | 
| 
 | 
   708 
 | 
| 
 | 
   709 ###############################################################################
 | 
| 
 | 
   710 if __name__ == "__main__":
 | 
| 
 | 
   711     main() |